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2 Kinetic Theory of Gases

Kinetic Theory of Gases

1.1 Introduction

In gases the intermolecular forces are very weak and its molecule may ﬂy apart in all directions. So the gas is characterised by

the Fo“owing properties.
i) It has no shape and size and can be obtained in a vessel of any shape or size.
p y shap
(i) 1t expands indefinitely and uniformly to fill the available space.
iii) 1t exerts pressure on its surroundings.
p g

1.2 Assumption of Kinetic Theory of Gases

Kinetic theory of gases relates the macroscopic properties of gases (such as pressure, temperature etc.) to the microscopic

properties of the gas molecules (such as speed, momentum, kinetic energy of molecule etc)

Actually it attempts to develop a model of the molecular behaviour which should result in the observed behaviour of an ideal

gas. It is based on following assumptions :

(1) Every gas consists of extremely small particles known as molecules. The molecules of a given gas are all identical but are

different than those of another gas.
(2) The molecules of a gas are identical, spherical, rigid and perfectly elastic point masses.
(3) Their size is negligible in comparison to intermolecular distance (10 m)

4 e volume ot molecules 1s negligible iIn comparison to the volume of gas. e volume of molecules 1s only 0.014% of the
The vol f molecules is negligible i pari he vol f gas. (The vol f molecules is only f th

volume of the gas).
(5) Molecules of a gas keep on moving randomly in all possible direction with all possible velocities.
(6) The speed of gas molecules lie between zero and infinity (very high speed).
(7) The number of molecules moving with most probable speed is maximum.

(8) The gas molecules keep on colliding among themselves as well as with the walls of containing vessel. These collisions are
perfectly elastic. (ie. the total energy before collision = total energy after the collision).

(9) Molecules move in a straight line with constant speeds during successive collisions.

(10) The distance covered by the molecules between two successive collisions is known as free path and mean of all free paths
is known as mean free path.

(1) The time spent M a collision between two molecules is negligible in comparison to time between two successive collisions.
(12) The number of collisions per unit volume in a gas remains constant.
(13) No attractive or repulsive force acts between gas molecules.

(14) Gravitational attraction among the molecules is ineffective due to extremely small masses and very high speed of

molecules.

(15) Molecules constantly collide with the walls of container due to which their momentum changes. The change in
momentum is transferred to the walls of the container. Consequently pressure is exerted by gas molecules on the walls of
container.

(16) The density of gas is constant at all points of the container.

1.3 Pressure of an ldeal Gas

Consider an ideal gas (consisting of N molecules each of mass m) enclosed in a cubical box of side L.
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, . . . N [ e ~ 7
It's any molecule moves with velocity i any direction where Vv =v i +v j+v.k

This molecule collides with the shaded wall (4,) with velocity v, and rebounds y

with velocity — v, .

—
\4
The change in momentum of the molecule AP = (—mv ,)—(mv,)=-"2mv, |-V 0> | A4
X
As the momentum remains conserved in a collision, the change in momentum
of the wall A is AP =2mv L
z

After rebound this molecule travel toward opposite wall A, with velocity —v_,
collide to it and again rebound with velocity v, towards wall A.
(1) Time between two successive collision with the wall A,

_ Distance travelled by molecule between two successive collision 2L

At -
Velocity of molecule v,
v
.. Number of collision per second n = — = —
At 2L

v m
(2) The momentum imparted per unit time to the wall by this molecule nAP = ﬁzmv .= Ivi

This is also equal to the force exerted on the wall 4, due to this molecule .. AF = %vz

X

(3) The total force on the wall A4, due to all the molecules F, = %Zvi

(4) Now pressure is defined as force per unit area

F, m 2 _m 2 - m 2 m 2
P=—%=—>»vyvi=—)» vy Similarly P, =— ) v and P =—)>v
Ty ALZX VZ* ey Sy sz : VZZ
So P, +P, +P. =ﬂV2(v§ +v; +v2)
3P=ﬂVZv2 [As P, =P, =P, =P and v? =v? +v? +1}]

3P:%(vf+v§+v§+ ...... )

or 3P = mN vl2 +v§ +v32 +vi +....
V N
2 2 2 2
+vieviaviao
or 3P = %mes |: As root mean square velocity of the gas molecule v, = \/v1 Y2 v]i] V4
1m sz
or = -
3 V rms
9mpom‘ﬂnf ﬁm’nfy
NT
G p=imNo o (NT [As v2 oo T']
3V ’ 14 ]
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(@) 1f volume and temperature of a gas are constant P oc mN ie. Pressure oc (Mass of gas).

ie. if mass of gas is increased, number of molecules and hence number of collision per second increases ie. pressure will

increase.

(b) 1f mass and temperature of a gas are constant. P oc (1/V), ie, if volume decreases, number of collisions per second will

increase due to lesser effective distance between the walls resulting in greater pressure.

(c) 1f mass and volume of gas are constant, P oc (v,,, )2 o T

ie, if temperature increases, the mean square speed of gas molecules will increase and as gas molecules are moving faster,

they will collide with the walls more often with greater momentum resulting in greater pressure.

ImN , 1M,

(i) P=——v,  =——V... [As M= mN = Total mass of the gas]
3 7 3V
1 3 M
P=—pv Asp=—
3 p rms { p V}
(iii) Relation between pressure and kinetic energy
1 1 (M 1
Kinetic energy = —Mvrzms .". Kinetic energy per unit volume (E)=—| — vrzm = —pvrzms (1)
2 28V ‘ 2
| .
and we know P = gpvrms ()

From (i) and (ii), we get P = %E

ie. the pressure exerted by an ideal gas is numerically equal to the two third of the mean kinetic energy of translation per
unit volume of the gas.

Sample Problems based on Pressure

Problem 1. The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas chamber at 0°C is 3180 m/s. The
pressure on the hydrogen gas is
(Density of hydrogen gas is 8.99 x 1072 kg /m* 1 atmosphere =1.01 x 10° N /m? ) [MP PMT 1995]
(@) o1 atm (b) 1.5 atm (c) 2.0 atm (d) 3.0 atm

] Lo, ) 2 5 2

Solution : (d) As P = Epvl_mS = 3(8.99 x1077)x(3180)" =3.03x10° N/m* =3.0atm

Problem 2. The temperature of a gas is raised while its volume remains constant, the pressure exerted by a gas on the walls of the
container increases because its molecules [CBSE PMT 1993]

(a) Lose more kinetic energy to the wall

(b) Are in contact with the wall for a shorter time
(c) Strike the wall more often with higher velocities
(d) Collide with each other less frequency

Solution : (c) Due to increase in temperature root mean square ve]ocity of gas molecules increases. So they strike the wall more often with

higher velocity. Hence the pressure exerted by a gas on the walls of the container increases.

Problem 3. A cy]inder of capacity 20 litres is filled with H2 gas. The total average kinetic energy of trans]atory motion of its molecules
is 1.5x 105 J . The pressure of hydrogen in the cy]inder is [MP PET 1993]
@) 2x10°N/m? (b) 3x10° N/m? () 4x10°N/m? d) 5x10° N /m?

Solution : (d) Kinetic energy £= 1.5 x10 5 J , volume V=20 Jitre= 20 X 10_3 m 3
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2E 2(1.5x10°
Pressure = —— = — — = 5%x10% N/m?.
3V 3{20x10~
Problem 4. N molecules each of mass m of gas A and 2N molecules each of mass 2m of gas B are contained in the same vessel at
temperature 7. The mean square of the velocity of molecules of gas Bis V' and the mean square of x component of the
: - owl
velocity of molecules of gas A is w”. The ratio — s [NCERT 1984; MP PMT 1990]
v
@ 1 ®) 2 © @
a c) — —
3 3
. . 3kT
Solution : (d) Mean square velocity of molecule = ——
For gas A, x component of mean square velocity of molecule = w?
3kT
.. Mean square velocity = 3w =2 (i)
m
. 2 _ 3kT .
For Bgas mean square velocity =v° = —— ... (ii)
2m
3w 2 w? 2
From (i) and (ii) =— s0o —/ =—.
vio 1l vi 3
Problem 5. A flask contains 107 m* gas. At a temperature, the number of molecules of oxygen are 3.0 x10?% . The mass of an

oxygen molecule is 5.3 x 10726 /(g and at that temperature the rms ve]ocity of molecules is 400 m/s. The pressure in

N/m 2 of the gas in the flask is

a) 8.48x10* (b) 2.87x10* () 25.44 x10* d) 12.72x10*
Solution - (a) V=10"m3, N=3.0x102, m=53x10 kg, v,,, =400 m/s
-26 22
potmN o 1 5.3x10 7 x3.0xI07 4502 _g 48 x10* Nim?>.
3V 3 103
Problem 6. A gas at a certain volume and temperature has pressure 75 cm. If the mass of the gas is doubled at the same volume and
temperature, its new pressure is
(@) 37.5 cm (b) 75 cm (c) 150 cm (d) 300 cm
Solution : (c) = lﬂvfms S P ﬂ
3V

At constant volume and temperature, if the mass of the gas is doubled then pressure will become twice.

11.4 1deal Gas Equation

A gas which strictly obeys the gas laws is called as perfect or an ideal gas. The size of the molecule of an ideal gas is zero ie.
each molecule is a point mass with no dimension. There is no force of attraction or repulsion amongst the molecule of the gas. All
real gases are not perfect gases. However at extreme]y low pressure and high temperature, the gases like hydrogen, nitrogen,
helium etc. are nearly perfect gases.

The equation which relates the pressure (P), volume (V) and temperature (7) of the given state of an ideal gas is known as
gas equation.

Ideal gas equations

For 1 mole or N, molecule or M gram or 22.4 fitres of gas PV=RT

For 4 mole of gas PV = URT
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For 1 molecule of gas R
PV = (—]T =kT

Ny

For N molecules of gas PV = NkT

For 1 gm of gas

PV = (AJT =rT
M

for n gm of gas

PV=nrT

(1) Universal gas constant (R) : Dimension [ML*T*0"]

B ﬂ B Pressure x Volume Work done

- url ~ No. of moles x Temperatu re ~ No. of moles x Temperatu re

Thus universal gas constant signifies the work done by (or on) a gas per mole per kelvin.

S.T.P. value :

231 Joule _1.08 cal _0.8221 litre x atm
mole x kelvin mole x kelvin mole x kelvin

(2) Boltzman's constant (&) : Dimension [ML°T 267"

(3) Specific

k= £ = L =1.38 x10 2 Joule /kelvin

N 6.023x10%
gas constant (7) : Dimension [L°T 207']

. Joule
yr=—:; UuUnt: —
M gm x kelvin

Since the value of M is different for different gases. Hence the value of ris different for different gases.

Problem 7.

Solution : (c)

Problem 8.

Solution : (c)

Problem 9.

Solution : (c)

Problem 10.

Sample Problems based on Ideal gas equation

A gas at 27°C has a volume V and pressure P. On heating its pressure is doubled and volume becomes three times. The

resulting temperature of the gas will be [MP PET 2003]
(a) 1800°C (b) 162°C (c) 1527°C (d) 600°C

T P V. 2P |37
From ideal gas equation PV = uRT we get e i | e | R

Tl Pl Vl Pl Vl

. T, =6T, =6x300 = 1800 K = 1527 °C.

A balloon contains 500 m3 of helium at 27°C and 1 atmosphere pressure. The volume of the helium at — 3°C temperature

and 0.5 atmosphere pressure will be [MP PMT/PET 1998; JIPMER 2001, 2002]
(a) 500 m? (b) 700 m* () 900 m* (d) 1000 m?
V T P,
From PV = uRT weget—2= 2L =(ﬂj(Lj=2:> V2=500><2:900m3
v, 1, )\p,) \300)\05) 5 5
When volume of system is increased two times and temperature is decreased half of its initial temperature, then pressure
becomes [ATEEE 2002]
(a) 2 times (b) 4 times (c) 1/ 4 times (d) 1/ 2 times
P T V T, /2 V P,
From PV = uRT weget—2= Bl | R W e Tl | i :l:>P2:—1
p 1 )\n, r, \av, ) 4 4
The equation of state corresponding to 8g of O, is [CBSE PMT 1994; DPMT 2000]

(a) PV =8RT (b) PV =RT/4 () PV=RT d) PV=RT/2
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Solution : (b)

Problem 1.

Solution : (d)

Problem 12.

Solution : (d)

Problem13.

Solution : (a)

Problem 4.

Solution : (d)

Problem15.

Solution : (d)
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1
As 32 gm O, means | mole therefore 8 gm O, means 1/ 4mole ie. i = r

So from PV = uRT we get PV:%RT or PV:R4—T

A flask is filled with 13 gm of an ideal gas at 27°C and its temperature is raised to 52°C. The mass of the gas that has to be
released to maintain the temperature of the gas in the flask at 52°C and the pressure remaining the same is

(@) 25¢ (b) 20g () 152 (d) w0g
PV o Mass of gas X Temperature

In this problem pressure and volume remains constant so M T} = M, T, = constant

M T
. —2——1=—(27+273)=—300 =£ = M, =M, ><£:13 ngm =12gm
M, 7, (52+273) 325 13 13 13

i.e. the mass of gas released from the flask = 13 gm—12 gm=1 gm.

Air is filled at 60°C in a vessel of open mouth. The vessel is heated to a temperature 7 so that 1 / 4" part of air escapes.

Assuming the volume of vessel remaining constant, the value of T'is [MP PET 1996, 99]
(a) 8o0°C (b) 444°C (¢) 333°C (d) 1m°C
M 3IM

M, =M,T =60+273 =333K, M, :M_T:T [As 1/ 4™ part of air escapes]
If pressure and volume of gas remains constant then M7 = constant

T, M M 4 4 4
S S b S S (L A T, =—xT =—x333 =444 K =171°C

T, M, 3M /4 3 3 3
If the intermolecular forces vanish away, the volume occupied by the molecules contained in 4.5 /(g water at standard
temperature and pressure will be given by [CPMT 1989]
(@) 5.6m’ by 4.5m’ (c) .2 litre (d) 11.2m°

Mass of water _ 45kg

= = =250, 7=273 Kand P =10 N/m* (STP)
Molecular wt. of water 18 x 10 = kg

T 2 . 2
From PV = uRT = y = RL _250x8.3x373 _ & (03
P 10°
The pressure P, volume V and temperature Tof a gas in the jar A and the other gas in the jar B at pressure 2P, volume V/4 and
temperature 27, then the ratio of the number of molecules in the jar A and Bwill be [ATIMS 1982]
(@ 1:1 (b) 1:2 () 2:1 (d) 4

Ideal gas equation PV = yRT = [Ni] RT where N=Number of molecule, N, = Avogadro number
A

SrllelR) -Gl

The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the
same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line

Volume
A
(@) E 8 2
(b) € c
D
(c) B / E
(d) A ) Temperature

M M
From PV oc MT or V oc F T ; Here ? represents the s]ope of curve drawn on volume and temperature axis.
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Problem 16.

Solution : (a)

Problem 17.

Solution : (b, c)

Problem18.

Solution : (d)

Problem 19.

Solution : (d)

For first condition s]ope (%\J graph is D (given in the prob]em)

2M
For second condition slope —— = 4(?) i.e. slope becomes four time so graph A is correct in this condition.

P2
If the value of molar gas constant is 8.3 //mo/eLK, the n speciﬁc gas constant for hydrogen in //mo/eLKwi" be
(@) 415 (b) 83 (c) 166 (d) None of these

i 1 tant (R .
Speciﬁ'c gas constant 7 = Universa £a5 constan ( ) = ﬁ =4.15 ]ou/e/ma/el(.

Molecular weight of gas (M)

A gas in container Ais in thermal equi]ibrium with another gas in container B. both contain equa] masses of the two gases in
the respective containers. Which of the fo"owing can be true

P P,
@@ P,V =Pl b) P =P, V=V () Py#Pg, Vy=Vg (d) 7/1:73
4 B

According to prob]em mass OF gases are equa] SO number OF mo]es Wl" not be equa] Le. /,lA * ILIB

P,V PyV
From ideal gas equation PV = ,uRT 44 _"B'B [As temperature of the container are equa]]
Ha Hp
V
From this relation it is clear that if P, = Py then L4 _Ha z1l ie V=V,
Vs Mg
P
Similarly if VA = VB then —4 = ’u—A #1 Jje PA * PB'
Py pp

Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed

in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath
will be

(a) 100°C
(b) 182°C 8990 o]
S
(C) 256°C DDSODOODODDDO
(d) 546°C Ice Hot bath
Quantity of gas in these bulbs is constant ie. Initial No. of moles in both
My + =y +
1.5PV . . .
Py BV _LSPV ISPV 2 LS LS g9k = saeec.
R(273) RQ73) RQ73) R() 273 2713 T

Two containers of equal volume contain the same gas at pressures P, and P, and absolute temperatures 7| and T,

respectively. On joining the vessels, the gas reaches a common pressure P and common temperature 7. The ratio P/ T is equal
to
A B AT+ RT,
@) —+—= b)) ——=2=
L T (T + 1))

AL + Bl (d i+i

(T, + T 2T, 2T,

. PZ V
and number OF mo]es m second vesse] l[lz =

RT, RT,

If both vessels are joined together then quantity of gas
Initially
remains same e U = U + [, 0%

P21y P1V+P2V

RT RTI RT2 0 Finally E

Number of moles in first vessel My =
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Problem 20.

Solution : (b)

Problem 21.

Solution : (b, c)

Problem 22.

Kinetic Theory of Gases 9

P_h B

= +
T 2T, 2T,

An ideal monoatomic gas is confined in a cy]inder by a springfloaded piston if cross-section 8 X 1073 }’I’l2 . Initia"y the gas is

3

at 300K and occupies a volume of 2.4 x 107 m* and the spring is in a relaxed state. The gas is heated by a small heater

coil H. The force constant of the spring is 8000 A/m, and the atmospheric pressure is 1.0 x 105Pa. The cy]inder and
piston are therma"y insulated. The piston and the spring are massless and there is no friction between the piston and
cy]inder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is neg]igib]e. With all the
above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1/m, then the final temperature is

(a) 400 K hd Gas Spring
(b) 800 K H | [

() 1200 K .

(d) 300 K

V, =24x102m?, P =P, =10° NZ and  7,=300 K (given)
m

If area of cross-section of piston is A and it moves through distance x then increment in volume of the gas = Ax

Pk

and if force constant of a spring is & then force F= kx and pressure = Z <

A
V2:Vl+Ax=2.4x10‘3+8x10‘3xo.1=3.2x10—3andpz:P0+ﬁ:105+mzzx105
4 8x1073
PV, P,V S x2. - % x 3. -
From ideal gas equation ——L = 22 :>10 x2.4x10 =2X1O x3.2x10 = T, =800 K

T, T, 300 7,
Two identical containers each of volume J|, are joined by a small pipe. The containers contain identical gases at temperature
T, and pressure F,. One container is heated to temperature 27|, while maintaining the other at the same temperature.

The common pressure of the gas is P and nis the number of moles of gas in container at temperature 2TO

4 2 P N4
(@ P=2P, (b) P=—P, (c) n:_O_VO (d n:iM
3 3 RT, 2 RT,
Initially for container A PO VO =1y RTO
. PO VO
For container B PyVy =ngRT, .. ny=———
RT,

Total number of moles = ng t+ny = 2n0

Since even on heating the total number of moles is conserved

Hence n+n, =2n, .. @)

If Pbe the common pressure then

Finally
PV %
For container A PV, =n R2T, Soong 0

A ® ®)
RT,

For container B PV, = n,RT, Son,

PV, PV, 2PV
o SV 2BV p_dp
2RT, RT,  RT, 3

Substituting the value of 1,7, and 71, in equation (i) we get

PV V. Py 1
No. of moles in container A (at temperature 27 ) = n; = 0 _ iPO 0o _ EM AsP = iPO
2RT, 3 2RT, 3 RT, 3

At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain
these read 27°C and 76 cm of Hg respective]y. Comparison of density of air at the top with that of bottom is

7°C 70 cm of Hg
v
v
v ¥
27°C 76 cm of Hg
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(@) 75/76

(b) 70776

(¢) 76/75

(d) 76/70
. N b P p_b T
Solution : (a) I1deal gas equation, in terms of density = =constant .. — = —X——
ol paT, Py P T

pTop _ PTop « TBottom _ B % 300 75

. PBottom PBottom TTop 76 280 76
11.5 Vander Waal's Gas Equation

All real gases do not obey the ideal gas equation. In order to explain the behaviour of real gases following two modification

are considered in ideal gas equation.

(i) Non-zero size of molecule : A certain portion of volume of a gas is covered by the molecules themselves. Therefore the space

available for the free motion of molecules of gas will be slightly less than the volume V of a gas.
Hence the effective volume becomes (V— b)

(ii) Force of attraction between gas molecules : Due to this, molecule do not exert that force on the wall which they would

have exerted in the absence of intermolecular force. Therefore the observed pressure P of the gas will be less than that present in

a
the absence of intermolecular force. Hence the effective pressure becomes (P + —2]

The equation obtained by using above modifications in ideal gas equation is called Vander Waal's equation or real gas

equation.
Vander Waal's gas equations
For 1 mole of gas (P + %}(V —b)=RT
2
ap
For u moles of gas (P + 7} (V — pub) = u RT

Here a and b are constant called Vander Waal's constant.
Dimension : [a] = [ML’T ] and [] = [£*]
Units : a= NX m* and b= .

1.6 Andrews Curves

The pressure (a versus vo]ume (V) curves FOT actual gases are ca"ed Andrews curves.

(1) At 350°G, part ABrepresents vapour phase of water, in this part Boyle’s law b
1 T Gas 380°C Liqui d
is obeyed | P oc — [. Part BC represents the co-existence of vapour and liquid = » vapour
V fH‘ region
phases. At point G vapours completely change to liquid phase. Part CD is parallel to Liquid ;7:];
pressure axis which shows that compressibility of the water is negligible. F e
(2) At 360°C portion representing the co-existence of liquid vapour phase is C"l poree  Vapour
shorter. a
Andrews curve for water V—
(3) At 370°C this portion is further decreased.

(4) At 374.°C it reduces to point (H) called critical point and the temperature 374.1°C is called critical temperature (7)) of
water.
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(5) The phase of water (at 380°C) above the critical temperature is called gaseous phase.

Critical temperature, pressure and volume

The point on the P-V curve at which the matter gets converted from gaseous state to liquid state is known as critical point.

At this point the difference between the liquid and vapour vanishes ie. the densities of liquid and vapour become equal.

(i) Critical temperature (7) : The maximum temperature below which a gas can be liquefied by pressure alone is called

critical temperature and is characteristic of the gas. A gas cannot be liquefied if its temperature is more than critical temperature.
CO, (304.3 K), O,(-18°C), N, (-1472°C) and H,0 (374.1°0)

(ii) Critical pressure (P) : The minimum pressure necessary to liquify a gas at critical temperature is defined as critical

pressure.
CO, (73.87 bar) and O, (49.7atm)

(iii) Critical volume (V,) : The volume of 1 mole of gas at critical pressure and critical temperature is defined as critical

volume.
CO, (95 x107° 7’

(iv) Relation between Vander Waal’s constants and 7, P, V,:

8a a 2R T R(T PV,
¢ = 'Pc: 2’Vc:3b' a= c,b:——c and € ¢ —-—"R
27Rb 27b 64 P, 8\ P, T,
Sample problems based on Vander Waal gas equation
Problem 23. Under which of the following conditions is the law PV= RT obeyed most closely by a real gas

[NCERT 1974; MP PMT 1994, 97; MP PET 1999; AMU 2001]

a) High pressure and high temperature b) Low pressure and low temperature
(a) Highp g p P p
c¢) Low pressure and high temperature d) High pressure and low temperature
P g P gh p P
Solution : (c) At low pressure and high temperature real gas obey PV = RT ie. they behave as ideal gas because at high temperature we

can assume that there is no force of attraction or repu]sion works among the molecules and the volume occupied by the

molecules is negligible in comparison to the volume occupied by the gas.

2
al
Problem 24. The equation of state of a gas is given by [P + TJ V¢ =(RT +b), where a, b, c and R are constants. The isotherms can

be represented by P = AV"™ — BV", where A and B depend only on temperature then

[CBSE PMT 1995]
(@ m=-c and n=-1 (b) m=c and n=1 () m=—c and n=1 (d) m=cand n=-1
aT2 c 21,-1 —c —c —c 2 -1
Solution : (a) P+ =V =RT+b= P+al* V" = RTV ™+ bV = P=(RT +b)/ ~* ~@I*)V
By comparing this equation with given equation P = AV"™ — BV" weget m = —c and n =-1.
Problem 25. An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from
the ideal gas behaviour. The variation of —— with Pis shown in the diagram. The correct variation will correspond to
(@) Curve A PVRT
(b) Curve B 20 A
B
(c) Curve C 0
(d) Curve D Cc
1 1 1 1 1 D
0,0 2'0 4'0 60 8'0 1(')0 P (atm)
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Solution : (b) At lower pressure we can assume that given gas behaves as ideal gas so E = constant but when pressure increase, the

decrease in volume will not take place in same proportion so RT will increases.

Problem 26. The conversion of ideal gas into solids is
(a) Possible only at low pressure (b) Possible only at low temperature
(c) Possible only at low volume  (d) Impossible

Solution : (d) Because there is zero attraction between the molecules of ideal gas.

11.7 Various Speeds of Gas Molecules

The motion of molecules in a gas is characterised by any of the following three speeds.

(1) Root mean square speed : It is defined as the square root of mean of squares of the speed of different molecules ie.

\% =

rms

\/vf FVI VI V)
N
1mN ,

(i) From the expression for pressure of ideal gas P = 5 Vs

f
. :\/3PV_\/ 3Py _ 3P [Asp:Masso gas}

mN \ Mass of gas 7 V
. _ 3PV _ 3uRT _ 3RT [As if M is the molecular weight of gas
(@) Vs = Mass of gas B 1M 'Y, PV = uRT and Mass of gas = u M |
3N kT
(iii) v, = \/3RT = = = \/3” [As M= Nym and R = N,
M N, M m

. /3P /3RT /3kT
.". Root mean square velocity v, = [— =.,[—— =,/—
Yol M m

9mpom‘ﬂnf ﬁoim‘y

(i) With rise in temperature rms speed of gas molecules increases as v,,, < V7 .

1

(i) With increase in molecular weight rms speed of gas molecule decreases as v, o« —.

M

e.g., rms speed of hydrogen molecules is four times that of oxygen molecules at the same temperature.

(iii) rms speed of gas molecules is of the order of km/s

RT 31x2
e.g, At NTP for hydrogen gas (v,,,) = \/3 = \/3 x8.3 X3 3 =1840m/s.
M 2x10
. 3. .
(iv) rms speed of gas molecules is _[— times that of speed of sound in gas
Y

3RT [RT 3
As V. =,—— and v = [— T
: Vi 3 Y 3 e

(v) rms speed of gas molecules does not depends on the pressure of gas (if temperature remains constant) because P «c p

(Boyle’s law) if pressure is increased n times then density will also increases by n times but v,,,. remains constant.

ms
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(vi) Moon has no atmosphere because v, of gas molecules is more than escape velocity (v,).

A planet or satellite will have atmosphere only and only if v,,,. <V,

(vii) At T=0; v,

= 0 ie. the rms speed of molecules of a gas is zero at 0 K This temperature is called absolute zero.

rms

(2) Most probable speed : The particles of a gas have a range of speeds. This is defined as the speed which is possessed by

maximum fraction of total number of molecules of the gas. eg., if speeds of 10 molecules of a gas are 1, 2, 2, 3, 3,3, 4, 5, 6, 6 km/s,

then the most probable speed is 3 km/s, as maximum fraction of total molecules possess this speed.

Most probable speed Vip = 2—P = M% = 2k_T
Vp \ m

(3) Average speed : It is the arithmetic mean of the speeds of molecules in a gas at given temperature.

ViV, FVy Y, e
vav = N

and according to kinetic theory of gases

8P 8 RT 8 kT
Average speed Vo = J—=——=]——
\ 7p Nz M \Nzm

2Y0te |

a V,ms:vav:vmp—\/gi\/gl\/EZ\/EZ\/ZS :\/E
T

Problem 27.

Solution : (a)

Problem 28.

Solution : (a)

Problem 29.

Solution : (c)

Problem 30.

Vims > Viy > Vy, (order remembering trick) (RAM)

rms

O For oxygen gas molecules v, = 461 m/s, v, = 424.7 m/s and v, = 376.4 m/s

Sample Problems based on Various speeds

At room temperature, the rms speed of the molecules of certain diatomic gas is found to be 1930 m/s. The gas is

@ H, (b) £ (€ 0, ) <,
Root means square velocity v, . = 1/% =1930 m/s (given)

M = 3RT = 53 30 =2x1073 kg =2 gm ie. the gas is hydrogen.
1930)> 1930 x 1930

T
Let A and B the two gases and given : 4 _ .—B ; where Tis the temperature and M is the molecular mass. If CA
A B
Cy
and Cp are the rms speed, then the ratio —= will be equal to [BHU 2003]
B
(@) 2 (b) 4 (e) 1 (d) o5

C T,/T T M
As v, = 3RT P R e Sy N ) As—L = 4 —4 gjven
Y Cy \M, /M, T, M,

The rms speed of the molecules of a gas in a vessel is 400 ms™. If half of the gas leaks out at constant temperature, the rms
speed of the remaining molecules will be [Kerala (Engg.) 2002]

(a) 800 ms’ (b) 400~/2 ms~! () 400 ms’ (d) 200 ms"

Root mean square velocity does not depends upon the quantity of gas. For a given gas and at constant temperature it always
remains same.

The root mean square speed of hydrogen molecules at 300 K is 1930 m/s. Then the root mean square speed of oxygen
molecules at 900 K will be [MH CET 2002]
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Solution : (b)

Problem 31

Solution : (a)

Problem 32.

Solution : (c)

Problem 33.

Solution : (d)

Problem 34.

Solution : (b)

Problem 35.

Solution : (c, d)

@ 193043m/s (b) 836 mls (c) 643 mls @ 2% s

V3

3RT VH, Ty, My, 1930 300 32 1930 x /3
Vims =l _— = X = =L)X = VO =——— =836 m/s.
M Vo, My, T, Vo, 2 900 : 4

At what temperature is the root mean square velocity of gaseous hydrogen molecules is equal to that of oxygen molecules at

47°C [CPMT 1985; MP PET 1997; RPET 1999; AIEEE 2002]
(@) 20K (b) 80 K () —73K (d) 3K
3RT, Ty
For oxygen Vo, = MOZZ and For hydrogen Vu, = 3R MHZZ
3RT07 Ty
According to problem = =~ = _|3R 2
M 0, M H,
T T 47 +273 T, 320
SN B BN = o, =20 =20K.
M o, M H, 32 2 2 2

Cooking gas containers are kept ina Iorry moving with uniform speed. The temperature of the gas molecules inside will
(a) Increase (b) Decrease

(c) Remain same (d) Decrease for some, while increase for others

If a lorry is moving with constant velocity then the v, of gas molecule inside the container will not change and we know

A

2 .
that 7" oc v, . So temperature remains same.

The speeds of 5 molecules of a gas (in arbitrary units) are as follows : 2, 3, 4, 5, 6. The root mean square speed for these

molecules is [MP PMT 2000]
(a) 2.9 (b) 3.52 (¢) 4.00 (d) 424

2 2 2 2 2 2 2 2 2 2
vrms:\/vl +v5 +V53+V4 +v3 :Jz +3 +45 +5°+6 _ 1(;0 :\/524.24

Gas at a pressure PO in contained as a vessel. If the masses of all the molecules are halved and their speeds are doub]ed, the
resu]ting pressure Pwill be equa] to
[NCERT 1984; MNR 1995; MP PET 1997; MP PMT 1997; RPET 1999; UPSEAT 1999, 2000]

P,
@ 45K (b) 25, © F (d) 70
I mN P P om2(2v )
m A% m v
P:—m—vrzms Pocmvrzms so —2=—2>< -2 S Sl il =2:>P2 =2P122P0
3V P m, 2] m, 2]
Let ‘7>Vrms and Vmp respective]y denote the mean speed, root mean square speed and most probab]e speed of the

molecules in an ideal monoatomic gas at absolute temperature 7. The mass of a molecule is m. Then
[NT-JEE 1998]

(a) No molecule can have speed greater than \/Evrms

W2

(b) No molecule can have speed less than v, ,
(C) Vmp < ‘7 < vrmS

2
mp

We know that Vims = ?,R;T, Vo = ERT and Vop = 2£
’ \ M T M M

(d) The average kinetic energy of a molecule is va




Magic World of Physics

Problem 36.

Solution : (c)

Problem 37.

Solution : (c)

Problem 38.

Solution : (a)

Problem 39.

Solution : (c)

Problem 40.

Solution : (d)
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Vrmszvav:vmp:\/31\12-5:\/E so Vmp<V <y

av rms

v 3 2 3 2 1 2 1 3 2 3 2
and = \/: or v, =—V .. Average kinetic energy = —mv, . =—m—Vv, =—mv, .
Vo 2 rms 5 mp ) rms B 5 mp 4 mp

The root mean square speed of the molecules of a diatomic gas is v When the temperature is doubled, the molecules
dissociate into two atoms. The new root mean square speed of the atom is [Roorkee 1996]

(@) \/EV (b) v (c) 2v (d) 4v
3RT

Vims = 1|——— - According to problem 7 will becomes 7]2 and M will becomes M/2 so the value of v,
M

ms Will increase by

V4 = 2 times i.e. new root mean square ve]ocity will be 2v.

The molecules of a given mass of a gas have a rms velocity of 200 mj/sec at 27°Cand 1.0 x 10> N /m? pressure. When the
temperature is 127°C and pressure is 0.5 x 105 N/mz, the rms ve]ocity in m/sec will be

[ATIMS 1985; MP PET 1992]

1002 400

10042 (b) 100~2 © —=

; 5

Change in pressure will not affect the rms Ve]ocity of molecules. So we will calculate only the effect of temperature.

re v T . Vaee _ [300 \/7 200 \/E Ly, 2 20x2 400
400 Vo V4 BB

400 ‘

(@) (d) None of these

Which of the following statement is true [T-JEE 1981]
(a) Absolute zero degree temperature is not zero energy temperature

(b) Two different gases at the same temperature pressure have equal root mean square velocities

(c) The rms speed of the molecules of different ideal gases, maintained at the same temperature are the same

(d) Given sample of 1cc of hydrogen and 1cc of oxygen both at N.T.P.; oxygen sample has a large number of molecules

At absolute temperature kinetic energy of gas molecules becomes zero but they possess potentia] energy so we can say that

absolute zero degree temperature is not zero energy temperature.

The ratio of rms speeds of the gases in the mixture of nitrogen oxygen will be

@ 1:1 b) V3:1 © 8 :47 ) V6 :47

_/2_\/§
28 7

A vessel is partitioned in two equa] halves by a fixed diathermic separator. Two different ideal gases are filled in left (L) and

3RT Vi,
M Vo,

Vims =

right (R) halves. The rms speed of the molecules in L part is equal to the mean speed of molecules in the R part. Then the
ratio of the mass of a molecule in L part to that of a molecule in R part is

3
@) \/;

(b) N7/4 L R
(c) +2/3

d) 37/8

3KT
mp

Root means square velocity of molecule in left part

Mean or average speed OF mo]ecu]e in Tight part Vav

8 KT
T mp
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. 3KT 8 KT 3 8 m; 37
Accordmg to prob]em = s — = = —=—
my T mpg m; 7Tmp mp 8

Problem 1. An ideal gas (7 =1.5) is expanded adiabatically. How many times has the gas to be expanded to reduce the root mean square

velocity of molecules 2 times

(a) 4 times (b) 16 times (c) 8 times (d) 2 times
Solution : (b) To reduce the rms velocity two times, temperature should be reduced by four times (As v, oc \/? )
T
I =T I,=—, =V
4
-1 1
V. T, V.
From adiabatic law 7V 7' = constant we get -z =1l -4 = —Z= (4)‘1/71 [y = 3/2 given]
Vl TZ I/1
: V.
= V,=1@)> =14} =16V, 72:16
1

11.8 Kinetic Energy of Ideal Gas

Molecules of ideal gases possess only translational motion. So they possess only translational kinetic energy.

Quantity of gas Kinetic energy
T
Kinetic energy of a gas molecule (E,,,....) = lm Vrzms = lm 3k—T = ikT Asv,,. i
2 2 m 2 m
Kinetic energy of 1 mole (M gram) gas (E,,.,.)
:lefms _ Ly 3RT 3 ep Asv,, = 3RT
2 2 M M
Kinetic energy of 1 gm gas (E,,) kN
“r :iiTzi 4 T:iiT:ErT
2 M 2mN 2m 2

Here m = mass of each molecule, M = Molecular weight of gas and N, = Avogadro number = 6.023 x 10*

ﬂmpom‘am‘ ﬂoz’m‘s‘

(1) Kinetic energy per molecule of gas does not depends upon the mass of the molecule but only depends upon the

temperature of the gas.

3
As E = EkT or Eoc T ie molecules of different gases say He, H, and O, etc. at same temperature will have same

3kT
translational kinetic energy though their rms speed are different. |:vrms = —:|
m

(2) Kinetic energy per mole of gas depends only upon the temperature of gas.

(3) Kinetic energy per gram of gas depend upon the temperature as well as molecular weight (or mass of one molecule) of

the gas.

3k T
Egram :EZT o Egram o —

From the above expressions it is clear that higher the temperature of the gas, more will be the average kinetic energy

possessed by the gas molecules at 7= 0, £= 0 ie. at absolute zero the molecular motion stops.

Sample Problems based on Kinetic energy
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Problem 42.

Solution : (c)

Problem 43.

Solution : (c)

Problem 44.

Solution : (a)

Problem 45.

Solution : (a)

Problem 46.

Solution : (d)

Kinetic Theory of Gases 17

Read the given statements and decide which is/are correct on the basis of kinetic theory of gases [MP PMT 2003]
(]) Energy of one molecule at absolute temperature is zero

() rms speeds of different gases are same at same temperature

(M) For one gram of all ideal gas kinetic energy is same at same temperature

(IV) For one mole of all ideal gases mean kinetic energy is same at same temperature

(a) All are correct (b) Tand 1V are correct (c) 1V is correct (d) None of these

If the gas is not ideal then its molecule will possess potential energy. Hence statement (1) is wrong.

rms speed of different gases at same temperature depends on its molecular weight . Hence statement (]I) also

1
e

wrong.

1
Kinetic energy of one gram gas depends on the molecular weight (E on H) Hence statement (111) also wrong.

But K.E. of one mole of ideal gas does not depends on the molecular weight (E = %RTJ . Hence (1V) is correct.

At which of the Fo"owing temperature would the molecules of a gas have twice the average kinetic energy they have at 20°C
(a) 40°C (b) 80°C () 313°C (d) 586°C
E, T, 2E, T,

E, T, E, (20 +273)

= T, =293 x2 =586 K =313°C.

A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300 K. The ratio of the average rotational

kinetic energy per O, molecule to that per N, molecule is [ITJEE 1998; DPMT 2000]

(@ 1:1
(b) 1:2
() 2:1
(

d) Depends on the moments of inertia of the two molecules

1
Kinetic energy per degree of freedom = EkT

1
As diatomic gas possess two degree of freedom for rotational motion therefore rotational K.E.= 2[5 kT) =kT

In the prob]ern both gases (oxygen and nitrogen) are diatomic and have same temperature (300 K) therefore ratio of average

rotational kinetic energy will be equa] to one.

A gas mixture consists of molecules of type 1, 2 and 3 with molar masses my > my > ms. v and K are the rms speed

rms

and average kinetic energy of the gases. Which of the following is true [AMU (Engg.) 2000]
(a) (Vrms )1 < (Vrms )2 < (vr‘ms )3 and (K)l = (K)2 = (K)S (b) (Vrms )1 = (vr‘ms )2 = (Vrms )3 and (1?)1 = (I?)z > (I?)%

©) Ot > Oy > )3 and (K < (K)y > (K3 (d) Gyt > Ops )z > Wy )3 and (K < (K), < (K

but kinetic energy does not depends onit £ oc M 0

1
TI’IE: rims speed depends upon the mo]ecu]ar mass Vrms oC
VM
In the problem m| >m, > m; S Wms )1 < Vs )a < Vs )3 but (K) =(K,)=(K3)
The kinetic energy of one gram mole of a gas at normal temperature and pressure is (R = 8.31 ]/mo/ef/()

[AFMC 1998; MH CET 1999; Pb. PMT 2000]
@) 0.56x10%J (b) 1.3x10%J (&) 2.7x10%J (d) 3.4x10°J

E:%RT:%XS&I x 273 = 3.4 %107 Joule
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Problem 47.

Solution : (c)

Problem 48.

Solution : (d)

Problem 49.

Solution : (b)

Problem 50.

Solution : (b)

Problem 51.

The average translational kinetic energy of O, (molar mass 32) molecules at a particular temperature is 0.048 eV. The
translational kinetic energy of N, (molar mass 28) molecules in eV at the same temperature is

[ITJEE 1997 Re-Exam]
(a) o0.0015 (b) 0.003 (c) 0.048 (d) 0.768

Average translational kinetic energy does not depends upon the molar mass of the gas. Different gases will possess same
average translational kinetic energy at same temperature.

The average translational energy and the rms speed of molecules in a samp]e of oxygen gas at 300 K are 6.21 x 10721‘]

and 484 m/s respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour)

@) 12.42x107%' J,968m /s (b) 8.78 x10 7' J,684m /s
() 6.21x107" J,968m /s d) 12.42x107*" J,684m /s

Ex T butv,, T
ie. if temperature becomes twice then energy will becomes two time 7e. 2 X 6.21 X 107 =12.42 x 107 ]
But rms speed will become \/5 times ie. 484 x \/_ =684 m/s.

A box containing N molecules of a perFect gas at temperature Tl and pressure Pl The number of molecules in the box is

doubled keeping the total kinetic energy of the gas same as before. If the new pressure is P, and temperature T, , then

T T
@ P=h NL=1 (b) PZZPI'T2:71 © P=2P T=1 (@ P2:2PI’T2:?1

3
Kinetic energy of N molecule of gas E = E NkT

Initially E, = %leTl and finally £, = %Nszz

T
But according to problem E| = E, and N, = 2N, .. %leTl :%(2N1)kT2 =T, 271

3 3
Since the kinetic energy constant 3 leTl = ENszz = Nl Tl = NZ T2 .. NT= constant

From ideal gas equation of Nmolecule PV = NkT

= PV, =PV, S P =P [AsV, =V, and NT = constant]

Three closed vessels A, Band C are at the same temperature T and contain gases which obey the Maxwellian distribution of
velocities. Vessel A contains on]y 0,,B only N, and C a mixture of equa] quantities of 0, and N, . If the average speed

of the O, molecules in vessel Ais V|, that of the N, molecules in vessel Bis V,, the average speed of the O, molecules

in vessel Cis (where M is the mass of an oxygen molecule)  [NTJEE 1992]
@ F+1)/2 ® 7 © G2 (d) V3kT /M

8kT
Average speed of gas molecule v, = ,/[——. It depends on temperature and molecular mass. So the average speed of
m

oxygen will be same in vessel A and vessel Cand that is equal to V.

The graph which represent the variation of mean kinetic energy of molecules with temperature #Cis

E E E E
(@) (b) (¢) (d)
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3 3
Solution : (c) Mean K.E. of gas molecule £ = EkT = Ek(t + 273) where T = temperature is in kelvin and ¢ = is in centigrade

E = %k t+ %X 273 k k = Boltzmann's constant

By comparing this equation with standard equation of straight line y = mx +c¢

3
We get m = Ek and ¢ = 527316. So the graph between E and ¢ will be straight line with positive intercept on E-axis and

positive slope with t-axis.

1.9 Gas Laws

(1) Boyle’s law : For a given mass of an ideal gas at constant temperature, the volume of a gas is inversely proportional to its

pressure.
. 1
ie Voo— or PV = constant or PV, =PV, [if m and T are constant]
m m
@i Pv= P(—] = constant [As volume = —]
P P
P PP
. — =constant or — =—= [As m = constant]
P P P2
N N N
(ii) PV = P(—j = constant [As number of molecules per unit volume 1 = 7 SV =—]
n n
P A
— =constant or —=—= [As N = constant]
n n, n,
1 mN
(iii) According to kinetic theory of gases P = §7v,2ms
mass of gas
P« —gX T [As v, < NT and mN = Mass of gas]
V
. | I . ,
1f mass and temperature of gas remain constant then P oc —. This is in accordance with Boyle’s law.
(iv) Graphical representation : If m and 7 are constant
PL Pvl— PV|— P v
|4 P v % 1P
Sample Problems based on Boyle's law
Problem 52. At constant temperature on increasing the pressure of a gas by 5% will decrease its volume by [MP PET 2002]

(@) 5% (b) 5.26% (¢) 4.26% (d) 4.76%
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Solution : (d)

Problem 53.

Solution : (b)

Problem 54.

Solution : (c)

Problem 55.

Solution : (d)

Problem 56.

If P, =P then P, = P +5% of P=105 P

Vo AP 100

From Boyle’s law PV = constant

v, P, 1.05P 105
. . AV V, =V, 100 -105 5
Fractional change in volume= — = = =——
Vi 105 105

AVV x100% = —% x100% = —4.76% ie. volume decrease by 4.76%.

N Percentage change in Vo]ume

A cylinder contained 10 kg of gas at pressure 10" N/m?*. The quantity of gas taken out of cylinder if final pressure is

25%x10° N/m is (assume the temperature of gas is constant) [EAMCET (Med.) 1998]
(@) Zero (b) 7.5 kg (c) 2.5 kg (d) 5 kg
. L _m
At constant temperature for the given volume of gas — = ——
2 My
10’ 10 2.5x10° x10
.. —6 = — :>m2:—x 7 X :25kg
2.5x10 m, 10

.. The quantity of gas taken out of the cylinder =10 — 2.5 = 7.5 kg

If a given mass of gas occupies a volume of 10 cc at 1 atmospheric pressure and temperature of 100°C (373.15 K). What will
be its volume at 4 atmospheric pressure; the temperature being the same [NCERT 1977]

(@) 100 cc (b) 400 cc () 2.5 cc (d) 104 cc

1 Vv, P 1
Pec— .. ==—=V,=10x|—|=25cc
Vv P, 4

An air bubble of volume VO is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant
temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before touching the surface

will be (density of water is )
Vo

)
P

According to Boy]e’s law mu]tipiication of pressure and volume will remains constant at the bottom and top.

h
@ 7y (b) Vo(pgh!P) © P g}

(d) V0(1+T

If Pis the atmospheric pressure at the top of the lake and the volume of
bubble is Vthen from P\ V|, = P, V,

Pth
(P+hpg)V, = PV = V:(M]VO

P

h
V:V0{1+p—g}
P

The adjoining ﬁgure shows graph of pressure and volume of a gas at two temperatures 7T} and T,. Which of the Fo"owing

interferences is correct

a) I1>T,
b) Ty =T,

o hi<h

(
(
(
(

d) No interf:erence can be drawn
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Solution : (c) For a given pressure, volume will be more if temperature is more (Char]e's ]aw)

From the graph it is clear that V, > V,

W T> T,

(2) Charle's law

(i) If the pressure remains constant, the volume of the given mass of a gas increases or decreases by m of its volume
at 0°C for each 1°Crise or fall in temperature.
Vi
1 . , .
Vz = VO 1+ ————1¢|. This is Charle’s law for centlgrade scale.
273 .15 A
(ii) 1 the pressure remaining constant, the volume of the given mass of a gas is ) ’
directly proportional to its absolute temperature. e €0
4 n_n
Vo T or — = constant or — = [If m and Pare constant]
T T, T,
V. m m
(ili) — = —— = constant [As volume V' = —]
r p
or pT = constant or p T, =p,T, [As m = constant]
1 mN
(iv) According to kinetic theory of gases P = §7v
Mass of gas
or P o LA OLE 4
If mass and pressure of the gas remains constant then Voc 7. This is in accordance with Charles law.
(v) Grap]’nca] representation : : If m and P are constant
1/7"— Torl/T —> Vorl/V—>
[All temperature T are in kelvin|
Sample problems based on Charle’s law
Problem 57. A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at 27°Cis V then volume at 327°C'is
(@ Vv (b) 3V () 2V (d) vz
V. T
Solution : (c) From Charle’slaw V oc T .. 2 =2 _ M 600 =2 = Vz =2V.
4 T 27 + 273 300
Problem 58. Hydrogen gas is filled in a balloon at 20°C. If temperature is made 40°C, pressure remaining same, what fraction of hydrogen
will come out [MP PMT 2002]
(a) o0.07 (b) 025 (¢) 05 (d) o0.75

V. T.
Solution : (a) As Vol oo —2=2 =7, 2(313JV1
14 T, 293
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Problem 59.

Solution : (c)

Problem 60.

Solution : (b)

Problem 61.

Solution : (c)

33),
v, -7, 293 20

Fraction of gas comes out = = =——=0.07.

2 v 293

The expansion of unit mass of a perfect gas at constant pressure is shown in the diagram. Here

(a) a=volume, b= °C temperature
(b) a=volume, b= K temperature
(c) a= °Ctemperature, b = volume

(d) a= Ktemperature, b= volume

In the given graph line have a positive slop with X-axis and negative intercept on F-axis.

So we can write the equation of line y=mx-¢ L. (i)

t

t= (i/ﬁj v,-273 (i)

0

According to Charle’s law V, = %t + ¥V, , by rewriting this equation we get

By comparing (1) and (ii) we can say that time is represented on Yaxis and volume in Xaxis.

A gas is filled in the cylinder shown in the figure. The two pistons are joined by a string. If the gas is heated, the pistons will

(a) Move towards left

(b) Move towards right Gas

(¢) Remain stationary

(d) None of these |

When temperature of gas increases it expands. As the cross-section ; ¢ greater force will

work on it (because F= PA). So piston will move towards right.

An ideal gas is initially at a temperature 7 and volume V. Its volume is increased by AV due to an increase in temperature

AT, pressure remaining constant. The quantity o= varies with temperature as

()

-

T

S f---

T T+ AT T+ AT T+AT
(Temp. K) (Temp. K) (Temp. K)
From ideal gas equation PV=RT
or PAV = RAT .. (i)
AV AT AV 1
Dividi tion (i) by (i oAl Ay s .
ividing equation (ii) by (i) we ge v T VAT - T (given)

1
o= 7 So the graph between dand 7 will be rectangular hyperbola.

(3) Gay-Lussac’s law or pressure law
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(i) The volume remaining constant, the pressure of a given mass of a gas increases or decreases by —— of its pressure

273 .15

at 0°C for each 1°Crise or fall in temperature.

P,
P =P, 1+——¢
273 .15

P

This is pressure law for centigrade scale.

(ii) The volume remaining constant, the pressure of a given mass of a gas is 273']'5 5 9

direct]y proportional to its absolute temperature. .
P P, P,
Poc T or — =constant or — = — [Iif m and Vare constant]
T T, T,
1mN
(iii) According to kinetic theory of gases P = g vrzms [As vfms o T
mass of gas
or P nass of gas T
V
1f mass and volume of gas remains constant then Poc 7. This is in accordance with Gay Lussac’s law.
(4) Graphical representation : If 7 and V are constants
P PT PT P P
e Ty —
T —> Torl|T —> Pori/P — T—> yr—>
[All temperature T are in kelvin]

Sample problems based on Gay Lussac's law

Problem 62. On 0°C pressure measured by barometer is 760 mm. What will be pressure on 100°C [AFMC 2002]
(a) 760 mm (b) 730 mm (c) 780 mm (d) None of these
P T
Solution : (d) From Gay Lussac’s law - _Gl A M = ﬂ = P, = ﬂ x 760 =1038 mm .
P, T, 0+273 273 273
Problem 63. If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C, the initial temperature must be
(@) 250 K (b) 250°C () 2500 K (d) 25°C
. 0.4 P
Solution : (a) P =P, T=T, P, =P+ (04% of P=P+—P=P+—— T, =T+1
100 250
P, T, P T
From Gay Lussac's law —=— = ———=—— [As V= constant for closed vessel]
P, T, P T+1
P+—
250
By solving we get 7= 250 K.
Problem 64. Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in

figure. Choose the correct alternative
@ W=VoVy=V, and V>V
b) V=V Vs =V, and ¥y <V,
o h=h=r=V,

(
(
@) Vi>Vi>V> W
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Solution : (a) From ideal gas equation PV = uRT .. P = % T

P V= constant
Comparing this equation with y = mx
R
Slope of linetan 8 = m :,U_ ie. V o 0
tan 6
. T
It means line of smaller slope represent greater volume of gas.

For the given problem figure

Point 1 and 2 are on the same line so they will represent same volume ie. V; =V,
Simi]ar]y point 3 and 4 are on the same line so they will represent same volume ie. V3 = V4

But V) >V; (=Vy)or Vy, >V (= Vy) as slope of line 1-2 is less than 3-4.

(5) Avogadro’s law : Equal volume of all the gases under similar conditions of temperature and pressure contain equal
number of molecules.

1
According to kinetic theory of gases PV = gm erzms

1
For first gas, PV = EmlNl Vrzms(l) ..... (1)
1 2 ,
For second gas, PV = Emz]\f2 Vims@) (i)
From (i) and (i) m N, v2  =m,N,v2 . (iif)
1 2 _ 1 2 _ 3 2 _ 2 .
As the two gases are at the same temperature Eml Vims1 = Emz Vims? = EkT = My Vel =M Vs wn(iV)

So from equation (iii) we can say that N, = N,. This is Avogadro’s law.

(i) Avogadro’s number (A,) : The number of molecules present in 1 grm mole of a gas is defined as Avogadro number.

N, =6.023 x10 per gm mole= 6.023 x 10 *® per kg mole.

(i) At ST.P. or N.T.P. (7'= 273 Kand P=1 atm) 22.4 litre of each gas has 6.023 x10 B molecule.
(iii) One mole of any gas at S.T.P. occupy 22.4 /itre of volume

Example : 32 gm oxygen, 28 gm nitrogen and 2gm hydrogen occupy the same volume at S.T.P.
(iv) For any gas 1 mole = M gram = 22.4 litre = 6.023 X 10” molecule.

Sample problems based on Avogadro’s Law

Problem 65. Temperature of an ideal gas is 7 K and average kinetic energy is £ =2.07 x 1027 Joule/molecule. Number of molecules
in 1 /itre gas at S.T.P. will be [CPMT 1994]
(a) 2.68 x10% (b) 2.68 x10% () 2.68x10% d) 1.68x10*
Solution : (a) As we know that at S.T.P. 22.4 /itre of gas contains 6.023 x10 2 molecules
6.023 x10*
1 /itre of gas contain DX =2.68 x10 2 molecules.

22.4
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Problem 66.

Solution : (d)

Problem 67.

Solution : (a)
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The average kinetic energy per molecule of helium gas at temperature 7 is E and the molar gas constant is R, then

Avogadro’s number is

RT 3RT E 3RT
— b) —— S ) =
(@) 2E (b) z (©) SRT (d) °E
- . 2F
Average kinetic energy per unit molecule £ = —kT .. k = —
2 3T
But Avagadro number= N , = 5 = L LNy = Ml
k  (E/37) 2E

One mole of a gas filled in a container at N.T.P., the number of molecules in 1 ¢n7® of volume will be
(@) 6.02x10% /22400 (b) 6.02x10% (c) 1/22400 d) 6.02x10% /76
Number of molecule in 22.4 /itre gas at NT.P. = 6.023 x 10 B

or number of molecule in 22.4 x10° em? =6.023 x 10 % [As 22.4 fitre = 22.4x10° cm?> ]

3 6.023x10%
22400

.. Number of molecules in 1cm

(6) Grahm’s law of diffusion : When two gases at the same pressure and temperature are allowed to diffuse into each other,
the rate of diffusion of each gas is inverse]y proportiona] to the square root of the density of the gas.

We k v 3P v, . oC I
€ KNOW Vs = 4|7 OF Vi T
V Jp

and rate of diffusion of a gas is proportional to its rms velocity ie, ¥ c v,

roc

n_ P
or — = —

\/; r P1

(7) Dalton’s law of partial pressure : The total pressure exerted by a mixture of non-reacting gases occupying a vessel is

equal to the sum of the individual pressures which each gases exert if it alone occupied the same volume at a given temperature.

For ngases P=P, + P, + P, +..... P

where P = Pressure exerted by mixture and PI ,P2 , P3 pvnenn Pn = Partial pressure of component gases.

Problem 68.

Solution : (a)

Problem 69.

Sample problems based on Dalton’s law

The capacity of a vessel is 3 Jitres. It contains 6 gm oxygen, 8 gm nitrogen and 5 gm CO, mixture at 27°C. If R = 831

Jimole x kelvin, then the pressure in the vessel in N /m? will be (approx.)

@@ 5x10° (b) 5x10* () 10° d 10°
RT RT RT

Dalton's law P = P, + P, + Py = 0 F2l A5 Zﬂ[ﬂ1+ﬂ2+ﬂ3]zﬂﬂ 22,0
14 14 14 4 VIM, M, M,

S 8300016 8 L5 498 x10% = 500 x10° = 5x10° Nim?.
3x107 [32 28 44

Two gases occupy two containers A and B the gas in A, of volume 0.10 m>, exerts a pressure of 1.40 MPa and that in B of

volume 0.15 m> exerts a pressure 0.7 MPa. The two containers are united by a tube of negligible volume and the gases are

allowed to intermingle. Then it the temperature remains constant, the final pressure in the container will be (in MPa)

(a) o0.70 (b) 0.98 (c) 140 (d) 210
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Solution : (b)

Problem 70.

Solution : (a)

Problem 7.

Solution : (d)

As the quantity of gas remains constant 4 4 + tp =l

_ 1.4x0.1+0.7x0.15 — P =098 MPa.

0.1+0.15

PAVA+PBVB_P(VA+VB)
RT RT RT

B P,V + PV,
Vy+Vg

= P

The temperature, pressure and volume of two gases Xand Yare 7, Pand V respectively. When the gases are mixed then the
volume and temperature of mixture become Vand 7 respectively. The pressure and mass of the mixture will be

(@) 2Pand 2M (b) Pand M () Pand 2M (d) 2Pand M
From Dalton’s law, Pressure of mixture = Pl + PZ =P+P=2P

Similarly mass also will become double ie. 2.

A closed vessel contains 8g of oxygen and 7g of nitrogen. The total pressure is 10 atrm at a given temperature. If now oxygen
is absorbed by introducing a suitable absorbent the pressure of the remaining gas in atm will be

(@ 2 (b) 10 (c) 4 d) 5

From Dalton’s law final pressure of the mixture of nitrogen and oxygen

RT RT

p_p o p, MR mRT _my RT my RT 8 RT T RT_RT o RT
V V M,V M,V 321V 28V 2V 2V

When oxygen is absorbed then for nitrogen let pressure is P = 27—8% = P= % ..... (ii)

From equation (i) and (ii) we get pressure of the nitrogen P =5 atm.

(8) 1deal gas equation : From kinetic theory of gases P = 37\/

If mass of gas is constant then PVoc T or

1 mN 2

rms

Po (mass of gas)T

[As V2, o T]
.

PV = RT. This is ideal gas equation.

11.10 Degree of Freedom

The term degree of freedom of a system refers to the possible independent motions, systems can have. or

The total number of independent modes (ways) in which a system can possess energy is called the degree of freedom (#.

The independent motions can be translational, rotational or vibrational or any combination of these.

So the degree of freedom are of three types : (i) Translational degree of freedom

(i) Rotational degree of freedom

(iii) Vibrational degree of freedom

Genera] expression FOI‘ degree OF Freedom

(1) Monoatomic gas : Molecule of monoatomic gas can move in any direction in space so it can "

have three independent motions and hence 3 degrees of freedom (all translational)

(2) Diatomic gas : Molecules of diatomic gas are made up of two atoms joined rigidly to one
another through a bond. This cannot only move bodily, but also rotate about one of the three co-
ordinate axes. However its moment of inertia about the axis joining the two atoms is negligible
compared to that about the other two axes. Hence it can have only two rotational motion. Thus a S

diatomic molecule has 5 degree of freedom : 3 translational and 2 rotational.

(3) Triatomic gas (Non-linear) : A non-linear molecule can rotate about any of three co- v

f=3A-B; where A = Number of independent particles, B= Number of independent restriction

N

X
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ordinate axes. Hence it has 6 degrees of freedom : 3 translational and 3 rotational.

(4) Tabular display of degree of freedom of different gases

Atomicity of gas Example A B f=3A-B Figure
Monoatomic He, Ne, Ar 1 0 =3 A
Diatomic H,, O, 2 1 =5 A B A

A
Triatomic non linear H,0 3 3 f=6 ly \B
A B A
A
Triatomic linear CO,, BeCl, 3 2 =7 A 7 50 A

Note : A The above degrees of freedom are shown at room temperature. Further at high temperature, in case of diatomic or
polyatomic molecules, the atoms with in the molecule may also vibrate with respect to each other. In such cases, the
molecule will have an additional degrees of freedom, due to vibrational motion.

U An object which vibrates in one dimension has two additional degree of freedom. One for the potential energy
and one for the kinetic energy of vibration.

U A diatomic molecule that is free to vibrate (in addition to translation and rotation) will have 7 (2 + 3 + 2) degrees of
freedom.

O An atom in a solid though has no degree of freedom for translational and rotational motion, due to vibration

along 3 axes has 3 x 2 = 6 degrees of freedom (and not like an ideal gas molecule). When a diatomic or
polyatomic gas dissociates into atoms it behaves as monoatomic gas whose degree of freedom are changed
accordingly.

1.1 Law of Equipartition of Energy

For any system in thermal equilibrium, the total energy is equally distributed among its various degree of freedom. And the

1
energy associated with each molecule of the system per degree of freedom of the system is EkT .

where k=138 x10 2 J /K, T= absolute temperature of the system.

If the system possess degree of freedom fthen

kT

Total energy associated with each molecule

D |~

Total energy associated with N molecules N=kT

Total energy associated with each mole —RT

Total energy associated with £ mole —RT

Total energy associated with each gram —rT

Total energy associated with A, gram M, ng

Sample problems based on Law of equipartition of energy
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3
Problem 72. Energy of all molecules of a monoatomic gas having a volume V and pressure Pis EP V. The total translational kinetic energy
of all molecules of a diatomic gas as the same volume and pressure is [UPSEAT 2002]
1 3 5
(a) EPV (b) EPV (c) EPV (dy 3PV

/

Solution : (b) Energy of 1 mole of gas = ERT = §PV where = Degree of freedom

Monoatomic or diatomic both gases posses equa] degree of freedom for translational motion and that is equa] to3ie f=3

3
w E=—PV
2
Although total energy will be different, For monoatomic gas E ., = EPV [As f=3]
5
For diatomic gas E, = EPV [As f=5]
Problem 73. The temperature of argon, kept in a vessel is raised by 1°C at a constant volume. The total heat supplied to the gas is a
combination of translational and rotational energies. Their respective shares are [BHU 2000]
(a) 60% and 40% (b) 40% and 60% (¢) 50% and 50% (d) 100% and 0%
Solution : (d) As argon is a monoatomic gas therefore its molecule will possess only translatory kinetic energy ie. the share of translational

and rotational energies will be 100% and 0% respectively.

Problem 74. COZ(O— C—O) is a triatomic gas. Mean kinetic energy of one gram gas will be (]F NfAvogadro's number, A

Boltzmann's constant and molecular weight of CO, =44 )
(a) 3/88 NkT (b) 5/88NkT () 6/88NKT (d)y 7/88 NkT

/

Solution : (d) Mean kinetic energy for 1 mole gas = ﬂ~5RT

g EzleTz n lNkT . 7 NET :LNkT [As £=7 and M= 44 for CO, ]
2 M)2 44 \ 2 88
Problem 75. At standard temperature and pressure the density of a gas is 1.3 gm/ P and the speed of the sound in gas is 330 m/sec.

Then the degree of freedom of the gas will be

@ 3 (b) 4 () 5 (d 6
Solution : (c) Given velocity of sound vy = 330 l, Density of gas p = 1.3 k—gS, Atomic pressure P = 1.01 x 105 iz
sec m m
y P

Substituting these value in v 4 =

— weget y =141
P

Now from 7/=1+3 we get f‘:i: =5.
I T 141

1.12 Mean Free Path

The molecules of a gas move with high speeds at a given temperature but even then a molecule of the gas takes a very long
time to go from one point to another point in the container of the gas. This is due to the fact that a gas molecule suffers a number
of collisions with other gas molecules surrounding it. As a result of these collisions, the

path followed by a gas molecule in the container of the gas is zig-zag as shown in the
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figure. During two successive collisions, a molecule of a gas moves in a straight line with constant velocity and the distance

travelled by a gas molecule between two successive collisions is known as free path.

The distance travelled by a gas molecule between two successive collisions is not constant and hence the average distance

travelled by a molecule during all collisions is to be calculated. This average distance travelled by a gas molecule is known as mean

free path.

Let 4,,4,,4;,...4, be the distance travelled by a gas molecule during 7 collisions respectively, then the mean free path of a

gas molecule is given by 4 =

m A=

\/Ezznd2

A+A + A+ + 4,
n

1

; where d = Diameter of the molecule, 7 = Number of molecules per unit volume

(2) As PV=pu RT=uNkT = % = kiT =1 =Number of molecule per unit volume
S 1 kT
o =——
V2 7d’P
(3) From A = ! > = n > = e [As mn = Mass per unit volume = Density = p]
J2md \/Eﬂ(mn )d \/372’612,0

(4) 1f average speed of molecule is v then

t
A=vx W =yvxT [As N = Number of collision in time ¢ 7= time interval between two collisions]

ﬂmﬁom‘am‘ ﬁoz’m‘s‘

(i) As A=

(i) As A =—=

1
.. A o — ie. the mean free path is inversely proportional to the density of a gas.

"
\/Eﬂdzp P

1 kT

. For constant volume and hence constant number density 7 of gas molecules, — is constant so that

\/EﬂdzP

A will not depend on P and 7: But if volume of given mass of a gas is allowed to change with P or 7 then A oc T at constant

pressure and A oc — at constant temperature.

Problem 76.

Solution : (b)

Problem 77.

Sample Problems based on Mean free path

If the mean free path of atoms is doubled then the pressure of gas will become [RPMT 2000]
@) P/4 (b) P/2 () P/8 d P
1 kT I . . .
As A =— > P — e by ncreasing A two times pressure will become half.
V2 P

The mean free path of nitrogen molecules at a pressure of 1.0 atrm and temperature 0°Cis 0.8 x 10 7 m . If the number of

density of molecules is 2.7 x 10 2 perm 3 then the molecular diameter is

(@) 3.2nm (b) 3.24 (c) 3.2um (d) 2.3mm
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Solution : (b) Mean free path 4 = 0.8 x 107 m number of molecules per unit volume n = 2.7 x 10 2 per n?’

Substituting these value in 4 = ; we get d =+1.04 x 10719 =3.2x 10710 m =324

\/Efmdz

1113 Specific heat or Specific Heat Capacity

It characterises the nature of the substance in response to the heat supp]ied to the substance. Speciﬁc heat can be defined by

two following ways : Gram specific heat and Molar specific heat.

(1) Gram specific heat : Gram specific heat of a substance may be defined as the amount of heat required to raise the

temperature OF unit mass OF the substance by unit degree.

A
Gram specific heat ¢ = —Q

mAT

cal cal Joule

Units : ) )
gmx°C  gmxkelvin kg xkelvin

Dimension : [L2T72(971]

(2) Molar specific heat : Molar specific heat of a substance may be defined as the amount of heat required to raise the

temperature of one gram mole of the substance by a unit degree, it is represented by capital (C)

_9
HAT

calorie calorie Joule

Units : k — or -
mole x°C  mole x kelvin mole x kelvin

9mpom‘anf ﬁoinfs’

(])C=MC=M£:L£ As}u:ﬂ
m AT  u AT M

ie. molar specific heat of the substance is M times the gram specific heat, where M is the molecular weight of that substance.

/
(2) Specific heat for hydrogen is maximum ¢ = 3.5 @

gmx°C’

cal
(3) In liquids, water has maximum specific heat ¢ =1

gm x°C '
(4) Specific heat of a substance also depends on the state of substance i.e. solid, liquid or gas.

cal 1 cal c 047 cal

water ’
gm x°C

Example : ¢,,, = 0.5 oC
gm x

steam

—_—\ C
gm x°C

(5) Specific heat also depends on the conditions of the experiment ie. the way in which heat is supplied to the body. In
general, experiments are made either at constant volume or at constant pressure.

In case of solids and liquids, due to small thermal expansion, the difference in measured values of specific heats is very small
and is usua“y neg]ected. However, in case of gases, speciﬁc heat at constant volume is quite different from that at constant

pressure.

1114 Specific Heat of Gases
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In case of gases, heat energy supplied to a gas is spent not only in raising the temperature of the gas but also in expansion of

gas against atmospheric pressure.

Hence speciﬁc heat of a gas, which is the amount of heat energy required to raise the temperature of one gram of gas

through a unit degree shall not have a single or unique value.

(i) 1f the gas is compressed suddenly and no heat is supplied from outside 7e. AQ = 0, but the temperature of the gas raises

on the account OF compression.

AQ

=——= ie C=0
m(AT)

(i) 1f the gas is heated and allowed to expand at such a rate that rise in temperature due to heat supplied is exactly equal to

fall in temperature due to expansion of the gas. ie. AT=0

_ A0 AQ
m(AT) 0

=0 re. C=o0

(iii) 1f rate of expansion of the gas were slow, the fall in temperature of the gas due to expansion would be smaller than the
rise in temperature of the gas due to heat supplied. Therefore, there will be some net rise in temperature of the gas ie. A7 will be
positive.

A
C= Q
m(AT)

= positive ie. C= positive

(iv) If the gas were to expand very fast, fall of temperature of gas due to expansion would be greater than rise in

temperature due to heat supplied. Therefore, there will be some net fall in temperature of the gas i.e. AT will be negative.

C= _A0
m(=AT)

= negative ie. C = negative

Hence the speciﬁc heat of gas can have any positive value ranging from zero to inﬁnity. Further it can even be negative. The

exact value depends upon the mode of heating the gas. Out of many values of specific heat of a gas, two are of special significance.

(1) Specific heat of a gas at constant volume (c,) : The specific heat of a gas at constant volume is defined as the quantity of
(A9),
mAT

heat required to raise the temperature of unit mass of gas through 1 K when its volume is kept constant, ie, ¢, =

If instead of unit mass, 1 mole of gas is considered, the specific heat is called molar specific heat at constant volume and is
represented by capital C,

C - ite, MO0, 140, [ As s %}

mAT u AT

(2) Specific heat of a gas at constant pressure (c,) : The specific heat of a gas at constant pressure is defined as the quantity

(A0),
mAT

of heat required to raise the temperature of unit mass of gas through 1 K when its pressure is kept constant, ie, cp =

If instead of unit mass, 1 mole of gas is considered, the specific heat is called molar specific heat at constant pressure and is

represented by C,.
 M(AQ), 1(80),

m
Cc,=MC = Aspu=—
’ ’ mAT u AT [ a M}

11.15 Mayer's Formula

Out of two principle specific heats of a gas, C, is more than C, because in case of C, volume of gas is kept constant and heat

is required only for raising the temperature of one gram mole of the gas through 1°Cor 1 K.
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No heat, what so ever, is spent in expansion of the gas.

It means that heat supplied to the gas increases its internal energy only ie.
AQ), =AU=pC,AT (i)
while in case of C, the heat is used in two ways
(i) In increasing the temperature of the gas by AT
(ii) In doing work, due to expansion at constant pressure (AW)
So AQ), =AU+AW =uC,AT . (ii)

From equation (i) and (i) x4 C,AT — uC,AT = AW

= ,UAT(Cp -C,)=PAV [For constant , AW= PAV]
= c -C _ﬂ F PV = uRT, At tant PAV = uRA
» .= LAT [From PV = uRT, At constant pressure = URAT]

= C,-C, =R

This relation is called Mayer’s formula and shows that Cp > C, ie molar specific heat at constant pressure is greater than

that at constant volume.

1116 Specific Heat in Terms of Degree of Freedom

We know that kinetic energy of one mole of the gas, having fdegrees of freedom can be given by

Ezf_fRT ..... (i)

2

where T'is the temperature of the gas but from the definition of C,, if dE is a small amount of heat energy required to raise

the temperature of 1 grm mole of the gas at constant volume, through a temperature d7 then

dE =uC,dT =C,dT or C, = Z—? [Asp=11 .. (ii)

Putting the value of E from equation (i) we get C, = %(gRT) = iR

From the Mayer’s formula C, -C, =R = C, :Cv+R:§R+R =[§+1]R

C :[£+1jR
? 2

2
Ratioof G,and C,: y = —=—7—"—=1+—
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2
y=1+—
f

9mﬁ0rfanf poim‘s'

(i) Value of yis always more than 1. So we can say that always C, > C,.

(i) Value of yis different for monoatomic, diatomic and triatomic gases.

2
(i) As y =1+ =
A

2
:)-:7/_1 = L=
f

Specific heat and kinetic energy for different gases

Kinetic Theory of Gases 33

Monoatomic Diatomic Triatomic Triatomic
non-linear linear
Atomicity A 1 2 3 3
Restriction B 0 1 3 2
Degree of freedom f=3A-B 3 5 6 7
Molar specific heat at f R 3 5 7
constant volume G = ) R= 71 ER ER 3R ER
Molar specific heat at f P
constant pressure Cp =|=+1[R=|——|R —R —R 4R —R
2 y—1
Ratio of C,and C, C
v 5 7 4 9
’ y=—L=1+= 2~ 1.66 ety 2133 Z=1.28
¢, 3 5 3 7
Kinetic energy of 3 5 7
E RT —RT —RT 3RT —RT
1 mole mole 2 2 2
Kinetic energy of f 3 5 7
=L = - kT —
| molecule E olecule 2 kT 2 kT 2 kT 3 2 kT
Kinetic energy of 3 5 7
Egra.m :irT —rT —rT 3rT —rT
1gm 2 2 2 2
Sample Problems based on Specific heat
Problem 78. Find the ratio of specific heat at constant pressure to the specific heat constant volume for NH 5 [RPMT 2003]

(@) 133

Solution : (c)

(b) 144

For po]yatomic gas ratio of speciﬁc heat 7<133

(c) 1.28

Because we know that as the atomicity of gas increases its value of ¥ decreases.

Problem 79.

v

d) 167

R
For a gas C_ =0.67 . This gas is made up of molecules which are [CBSE PMT 1992; JIPMER 2001, 2002]
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Solution : (c)

Problem 8o.

Solution : (a)

Problem 81.

Solution : (c)

Problem 82.

Solution : (d)

Problem 83.

Solution : (d)

Problem 84.

Solution : (c)

Problem 85.

(a) Diatomic (b) Mixture of diatomic and polyatomic molecules
(¢) Monoatomic (d) Polyatomic
R
By comparing with relation C,, = —— we get ¥ —1 =0.67 or ¥=1.67 ie. the gas is monoatomic.
y—

40 calories of heat is needed to raise the temperature of 1 mole of an ideal monoatomic gas from 20°C to 30°C at a constant
pressure. The amount of heat required to raise its temperature over the same interval at a constant volume
(R = 2 caloriemole "K' is [UPSEAT 2000]

(@) 20 calorie (b) 40 calorie (c) 60 calorie (d) 80 calorie

At constant pressure (AQ), = uC,AT =1xC, x(30-20)=40 = C, :4%
mole kelvin

~C,=C,-R =4-2= __calorie
mole x kelvin

Now (AQ), = uC,AT =1x2x(30 —20) = 20 calorie

R
At constant volume the speciﬁc heat of a gas is 37, then the value of V4 will be [DPMT 1999]
@) o) © 3 (@) None of the sb
a) — — c) — one of the above
2 2 3
R R
Specific heat at constant volume CV = —1 = 3— (given)
y —
—-1= E = = 2
4 3 Y
For a gas the difference between the two specific heats is 4150 J/kg K. What is the specific heats at constant volume of gas if
the ratio of specific heat is 1.4 [AFMC 1998]
(a) 8475 Jlkg - K (b) 5186 Jikg - K (c) 1660 Jlkg - K (d) 10375 Jlkg - K
C
Given ¢, —c, = 4150 ..(i) and c—” =14 =>c,=14c, .. (i)

v

By substituting the value of Cp in equation (1) we get 1.40‘, —-c, = 4150 = 0.4CV =4150

~ 4190 0375 Jkg -k .
0.4

Cy

Two cy]inders A and B fitted with pistons contain equa] amounts of an ideal diatomic gas at 300K The piston of A is free to
move while that of Bis held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of
the gasin Ais 30 X then the rise in temperature of the gas in Bis [IITJEE 1998]

(@) 30 K (b) 18 K (¢) 50 K (d) 42 Kk
In both cylinders A and B the gases are diatomic (= 1.4). Piston A is free to move i.e. it is isobaric process. Piston B is fixed

ie. it is isochoric process. If same amount of heat AQis given to both then

(AQ)isobaric = (AQ)isochoric

C
uC,(AT), = uC,(AT)y = (AT)y = C—”(AT)A =y(AT), =1.4x30 =42 K.

v

The specif’ic heat of a gas [MP PET 1996]
a) Has only two values of C_ and C b) Has a unique value at a given temperature
y p v q g P
¢) Can have any value between 0 and o d) Depends upon the mass of the gas
Yy P P g

Range of speciﬂc heat varies from positive to negative and from zero to infinite. It depends upon the nature of process.
The specific heat at constant volume for the monoatomic argon is 0.075 kcallkg-K whereas its gram molecular specific

heat C, = 2.98 cal/mole/K. The mass of the argon atom is (Avogadro’s number = 6.02 x 102 molecules|/mole)
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Solution : (a)

Problem 86.

Solution : (d)

Problem 87.

Solution : (c)

Problem 88.

Solution : (b)

Problem 89.

Solution : (c)
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@) 6.60x1072 gm (b) 3.30x107 gm () 220x107% gm d) 13.20x1072 gm
Molar specific heat = Molecular weight X Gram specific heat
C, =Mxc,
. 3 .
— 208 calorie M %0.075 keal ~ M x 0.075 x 10 calorie
mole x kelvin kg - kelvin 103 gm x kelvin
*. molecular weight of argon M = 298 =39.7gm
0.075
. 2 , 39.7 23
ie. mass of 6.023 x 10~ atom = 39.7 gm .. mass of single atom = — = 6.60 x10 = gm .
6.023 x10
When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the
internal energy of the gas is [ITJEE 1990]
(@) 2/5 (b) 3/5 (c) 317 (d) 5/7

When a gas is heated at constant pressure then its one part goes to increase the internal energy and another part for work

done against external pressure ie. (AQ)p =AU+ AW

= uC,AT = pC,AT + PAV
A C 7
So fraction of energy that goes to increase the internal energy P =—=—= i [As y = — for diatomic gas]
hQ), €, y 7 5

The temperature of 5 mole of a gas which was held at constant volume was changed from 100°C to 120°C. The change in

internal energy was found to be 80 /. The total heat capacity of the gas at constant volume will be equal to
@ 8JK! (b) 08K © 4JK d 04JK"
At constant volume total energy will be utilised in increasing the temperature of gas

ie. (AQ), = uC,AT = nuC,(120 —100) =80

80
= uC, = % =4 Joule/kelvin. This is the heat capacity of 5 mole gas.

A gas, is heated at constant pressure. The fraction of heat supplied used for external work is

@ - (b) (l—lJ @ 7-1 @ [I—LJ
V4 V4 V4

We know fraction of given energy that goes to increase the internal energy = —

1

So we can say the fraction of given energy that supplied for external work =1 ——.

v

A monoatomic gas expands at constant pressure on heating. The percentage of heat supp]ied that increases the internal

energy of the gas and that is involved in the expansion is

(@) 75%, 25% (b) 25%, 75% (c) 60%, 40% (d) 40%, 60%
. . . o 1 3 5 .
Fraction of energy supplied for increment in internal energy = — = g Asy = E for monoatomic gas
e

L Percentage energy = % = 60%
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Problem 90.

Solution : (b)

Problem .

Solution : (b)

Problem 92.

Solution : (b)

Problem 93.

Solution : (c)

-1 Py
Fraction of energy supp]ied for external work done =1 — l = ]/— = 3— = E
yoy S5
3
2
.". Percentage energy = 3 x100% = 40%.

The average degrees of freedom per molecule for a gas is 6. The gas performs 25 / of work when it expands at constant
pressure. The heat absorbed by gas is

@ 757 (b) 100/ (c) 150/ (d) 125/
As =6 (given) .. }/:1+£=1+£=—
f 6 3
Fraction of energy given for external work ﬂ = [1 - lj
e
= 2—5= I—L :1—i=l = AQ =25 x4 =100 Joule
AO 4/3 4 4

Certain amount of an ideal gas are contained in a closed vessel. The vessel is moving with a constant ve]ocity v. The

molecular mass of gas is M. The rise in temperature of the gas when the vessel is suddenly stopped is (¥ = Cp / Cy,)

2 2 2 2
@) 2RMV ) Mv=(y - 1) © My @ My
¥ +1) 2R 2R(y +1) 2R(y +1)

|

If m is the total mass of the gas then its kinetic energy = Emv

When the vessel is sudden]y stopped then total kinetic energy will increase the temperature of the gas (because process will

be adiabatic) ie. lmvz =uC,AT = ﬂCVAT [As Cv = L]
2 M y—1
2
- m R oar=la? o oar 202D
M y-1 2 2R

The density of a polyatomic gas is standard conditions is 0.795 kgm = The specific heat of the gas at constant volume is
@) 930 Jhg 'K (b) 1400 J-kg™' K () 1120 J-kg' K" (d) 925 J-kg' K
Ideal gas equation for m gram gas PV = mrT [where r= Specific gas constant]

P 1.013x10°

or P=20T = prT = r=—-= = 466.7
14 pT 0.795 x273
Specific heat at constant volume ¢, = U ﬂ = 1400 S |:}/ = 4 for polyat omic gas:|
y—-1 4 | kg kelvin 3

The value of C,, =C, =1.00 R for a gas in state Aand C,, —C, =1.06R in another state. If P, and Py denote the

pressure and 7, and T denote the temperatures in the two states, then
(@ Py=Py, T,>Tp by Py>Py, T,=T;g (€ Py<Pp, T,>Ty () Py>Py, Ty<Typ
For state 4, C,, —C, = R ie. the gas behaves as ideal gas.

For state B, Cp - CV =1.06 R(;t R) ie. the gas does not behave like ideal gas.

and we know that at high temperature and at low pressure nature of gas may be ideal.



Magic World of Physics

So we can say that Py, < Pgp and T, > T}

1.7 Gaseous Mixture
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If two non-reactive gases are enclosed in a vessel of volume V. In the mixture £ moles of one gas are mixed with £, moles of

another gas. If N, is Avogadro’s number then

Number of molecules of first gas N, = 1, N,

and number of molecules of second gas N, = 1, N,

(i) Total mole fraction = (1, + ;).

(ii) If M, is the molecular weight of first gas and M, that of second gas.

M, + u,M
Then molecular weight of mixture will be M = MM T M
Mty

(iii) Specific heat of the mixture at constant volume will be

=/U1CV] "'/UzCVZ _ 1 7 —1 ? 7, -1 _ R {M n Hy }
= Hy + 1 My + 1 M+ [ =1y, -1
c, - R m, /M, +m2/M2
“om my [T
M, M,
B mCp + 1, Cp

(iv) Specific heat of the mixture at constant pressure will be C, =

mix

My + Uy

/4 Y
,U{y I_JR“',UZ(}/ z—ljR R T
My + M+ \r -1 7,1
c, =—— R _Jmf | mf 7
"amy M, M \yi-1) My\y,-1)]
M, M,
C C
(1, Cp +1,Cp) {M( 71 jR+'u2( V2 JR}
™) 7 Cp, My + py mCp + 1,Cp, 711 721
v mixture = = =
e Ve (;ulch +:u2CV2) ,Ulch +IL12CVZ R N R
o u "
Hy + 4y Wrn-1) 7y, -t
7 +ﬂ272
. _ -1y, -1 :/117’1(7’2_1)"‘/1272(71_1)
e o oy =D+ (yy = 1)
-1 y,-1

Sample problems based on Mixture
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Problem 94. If two moles of diatomic gas and one mole of monoatomic gas are mixed with then the ratio of speciﬁc heats is
[MP PMT 2003]
5 19 15
L b = -z 4 —=
C) 3 (b) 2 (c) T (d) T
) 5 . 7 Lo
Solution : (c) M =1, 7= g (for monoatomic gas) and w, =2, y, = g (for diatomic gas)
Ix S 2 x 7
3 5
My Ml 5 | 7 1
ri-l ya-l 3 5 5/2+47 19
From formula ¥ e = = = ==
o M 1 2 3/2+5 13
=1 7 -1 2_1 1_1
3 5
Problem 95. 22 gm of COZ at 27°C is mixed with 16 gm of 02 at 37°C. The temperature of the mixture is [CBSE PMT 1995]
(a) 32°C (b) 27°C () 37°C (d) 30.5°C
Solution : (a) Let ¢is the temperature of mixture
Heat gained by CO, = Heat lost by O,
= lulcv] ATI :ﬂZCvaT2
22 16 (5
= —Q@R)(t-27)=—| =R |(37 — ¢
) GR)( ) 2 [ 3 )( )
5
= 3(t—27)=5(37 -1
By solving we get ¢ = 32°C.
Problem 96. A gas mixture consists of 2 mole of oxygen and 4 mole of argon at temperature 7. Neglecting all vibrational modes, the total

internal energy of the system is

(@) 4 RT (b) 15 RT (¢) 9RT (d) nRT

Solution : (d) Total internal energy of system = onygen + Uargon =4 f?lRT + Uy %RT

=2%RT+4%RT:5RT+6RT211RT [As £=5 (for oxygen) and £ = 3 (for argon)]
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