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 11.1 Introduction. 

In gases the intermolecular forces are very weak and its molecule may fly apart in all directions. So the gas is characterised by 
the following properties. 

(i) It has no shape and size and can be obtained in a vessel of any shape or size. 

(ii) It expands indefinitely and uniformly to fill the available space. 

(iii) It exerts pressure on its surroundings.   

 11.2 Assumption of Kinetic Theory of Gases. 

Kinetic theory of gases relates the macroscopic properties of gases (such as pressure, temperature etc.) to the microscopic 
properties of the gas molecules (such as speed, momentum, kinetic energy of molecule etc.) 

Actually it attempts to develop a model of the molecular behaviour which should result in the observed behaviour of an ideal 
gas. It is based on following assumptions : 

(1) Every gas consists of extremely small particles known as molecules. The molecules of a given gas are all identical but are 

different than those of another gas. 

(2) The molecules of a gas are identical, spherical, rigid and perfectly elastic point masses. 

(3) Their size is negligible in comparison to intermolecular distance (10–9 m) 

(4) The volume of molecules is negligible in comparison to the volume of gas. (The volume of molecules is only 0.014% of the 
volume of the gas). 

(5) Molecules of a gas keep on moving randomly in all possible direction with all possible velocities. 

(6) The speed of gas molecules lie between zero and infinity (very high speed). 

(7) The number of molecules moving with most probable speed is maximum. 

(8) The gas molecules keep on colliding among themselves as well as with the walls of containing vessel. These collisions are 

perfectly elastic. (i.e. the total energy before collision = total energy after the collision). 

(9) Molecules move in a straight line with constant speeds during successive collisions. 

(10) The distance covered by the molecules between two successive collisions is known as free path and mean of all free paths 
is known as mean free path. 

(11) The time spent M a collision between two molecules is negligible in comparison to time between two successive collisions. 

(12) The number of collisions per unit volume in a gas remains constant. 

(13) No attractive or repulsive force acts between gas molecules. 

(14) Gravitational attraction among the molecules is ineffective due to extremely small masses and very high speed of 

molecules. 

(15) Molecules constantly collide with the walls of container due to which their momentum changes. The change in 
momentum is transferred to the walls of the container. Consequently pressure is exerted by gas molecules on the walls of 

container. 

(16) The density of gas is constant at all points of the container. 

 11.3 Pressure of an Ideal Gas. 

Consider an ideal gas (consisting of N molecules each of mass m) enclosed in a cubical box of side L. 
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of the wall A1 is xmvP 2  
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(a) If volume and temperature of a gas are constant P  mN i.e. Pressure  (Mass of gas). 

i.e. if mass of gas is increased, number of molecules and hence number of collision per second increases i.e. pressure will 
increase. 

(b) If mass and temperature of a gas are constant. P  (1/V), i.e., if volume decreases, number of collisions per second will 

increase due to lesser effective distance between the walls resulting in greater pressure. 

(c) If mass and volume of gas are constant, TvP rms  2)(  

i.e., if temperature increases, the mean square speed of gas molecules will increase and as gas molecules are moving faster, 
they will collide with the walls more often with greater momentum resulting in greater pressure. 
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(iii) Relation between pressure and kinetic energy 
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From (i) and (ii), we get EP
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i.e. the pressure exerted by an ideal gas is numerically equal to the two third of the mean kinetic energy of translation per 
unit volume of the gas. 

Sample Problems based on Pressure 

Problem 1.  The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas chamber at 0°C is 3180 m/s. The 
pressure on the hydrogen gas is  

(Density of hydrogen gas is 32 /1099.8 mkg , 1 atmosphere 25 /1001.1 mN )  [MP PMT 1995] 

(a) 0.1 atm (b) 1.5 atm (c) 2.0 atm (d) 3.0 atm 

Solution : (d) As atmmNvP 0.3/1003.3)3180()1099.8(
3

1

3

1 25222
rms    

Problem 2.  The temperature of a gas is raised while its volume remains constant, the pressure exerted by a gas on the walls of the 
container increases because its molecules     [CBSE PMT 1993] 

(a) Lose more kinetic energy to the wall 

(b) Are in contact with the wall for a shorter time 

(c) Strike the wall more often with higher velocities 

(d) Collide with each other less frequency 

Solution : (c) Due to increase in temperature root mean square velocity of gas molecules increases. So they strike the wall more often with 
higher velocity. Hence the pressure exerted by a gas on the walls of the container increases. 

Problem 3.  A cylinder of capacity 20 litres is filled with 2H  gas. The total average kinetic energy of translatory motion of its molecules 

is J5105.1  . The pressure of hydrogen in the cylinder is    [MP PET 1993] 

(a) 26 /102 mN  (b) 26 /103 mN  (c) 26 /104 mN  (d) 26 /105 mN  

Solution : (d) Kinetic energy E = J5105.1  , volume V = 20 litre = 331020 m   
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Problem 4.  N molecules each of mass m of gas A and 2N molecules each of mass 2m of gas B are contained in the same vessel at 
temperature T. The mean square of the velocity of molecules of gas B is v2 and the mean square of x component of the 

velocity of molecules of gas A is w2. The ratio 
2
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v

w
 is    [NCERT 1984; MP PMT 1990] 
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Solution : (d) Mean square velocity of molecule 
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Problem 5.  A flask contains 3310 m  gas. At a temperature, the number of molecules of oxygen are 22100.3  . The mass of an 

oxygen molecule is 26103.5  kg and at that temperature the rms velocity of molecules is 400 m/s. The pressure in 
2/mN  of the gas in the flask is 

(a) 41048.8   (b) 41087.2   (c) 41044.25   (d) 41072.12   

Solution : (a) 3310 mV  , 22100.3 N , kgm 26103.5  , smvrms /400  
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Problem 6.  A gas at a certain volume and temperature has pressure 75 cm. If the mass of the gas is doubled at the same volume and 
temperature, its new pressure is 

(a) 37.5 cm (b) 75 cm (c) 150 cm (d) 300 cm 

Solution : (c) 2

3

1
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M
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At constant volume and temperature, if the mass of the gas is doubled then pressure will become twice. 

 11.4 Ideal Gas Equation. 

A gas which strictly obeys the gas laws is called as perfect or an ideal gas. The size of the molecule of an ideal gas is zero i.e. 
each molecule is a point mass with no dimension. There is no force of attraction or repulsion amongst the molecule of the gas. All 
real gases are not perfect gases. However at extremely low pressure and high temperature, the gases like hydrogen, nitrogen, 
helium etc. are nearly perfect gases. 

The equation which relates the pressure (P), volume (V) and temperature (T) of the given state of an ideal gas is known as 
gas equation. 
 

Ideal gas equations 

For 1 mole or NA molecule or M gram or 22.4 litres of gas PV = RT 

For  mole of gas  PV = RT 
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For 1 molecule of gas 
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(1) Universal gas constant (R) : Dimension ][ 122  TML  
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Thus universal gas constant signifies the work done by (or on) a gas per mole per kelvin. 
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(3) Specific gas constant (r) : Dimension ][ 122  TL  
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Since the value of M is different for different gases. Hence the value of r is different for different gases. 

Sample Problems based on Ideal gas equation 

Problem 7.  A gas at 27°C has a volume V and pressure P. On heating its pressure is doubled and volume becomes three times. The 
resulting temperature of the gas will be     [MP PET 2003] 

(a) 1800°C (b) 162°C (c) 1527°C (d) 600°C  

Solution : (c) From ideal gas equation RTPV   we get 6
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Problem 8.  A balloon contains 3500 m  of helium at 27°C and 1 atmosphere pressure. The volume of the helium at – 3°C temperature 

and 0.5 atmosphere pressure will be   [MP PMT/PET 1998; JIPMER 2001, 2002] 

(a) 3500 m  (b) 3700 m  (c) 3900 m  (d) 31000 m  

Solution : (c) From RTPV   we get 
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Problem 9.  When volume of system is increased two times and temperature is decreased half of its initial temperature, then pressure 
becomes       [AIEEE 2002] 

(a) 2 times (b) 4 times (c) 1 / 4 times (d) 1 / 2 times 

Solution : (c) From RTPV   we get 
4

1

2

2/

1

1

1

1

2

1

1

2

1

2 


































V

V

T

T

V

V

T

T

P

P
  

4
1

2

P
P   

Problem 10.  The equation of state corresponding to 8g of 2O  is   [CBSE PMT 1994; DPMT 2000] 

(a) RTPV 8  (b) 4/RTPV   (c) RTPV   (d) 2/RTPV   
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Solution : (b) As 32 gm 2O  means 1 mole therefore 8 gm 2O  means 1 / 4mole i.e. 
4

1
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  So from RTPV   we get RTPV
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1
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Problem 11. A flask is filled with 13 gm of an ideal gas at 27°C and its temperature is raised to 52°C. The mass of the gas that has to be 
released to maintain the temperature of the gas in the flask at 52°C and the pressure remaining the same is   

(a) 2.5 g (b) 2.0 g (c) 1.5 g (d) 1.0 g 

Solution : (d) PV  Mass of gas  Temperature 

  In this problem pressure and volume remains constant so 11TM = M2T2 = constant  

    
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 i.e. the mass of gas released from the flask = 13 gm – 12 gm = 1 gm. 

Problem 12.  Air is filled at 60°C in a vessel of open mouth. The vessel is heated to a temperature T so that 1 / 4th part of air escapes. 
Assuming the volume of vessel remaining constant, the value of T is   [MP PET 1996, 99] 

(a) 80°C (b) 444°C (c) 333°C (d) 171°C 

Solution : (d) MM 1 , KT 333273601  , 
4
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4
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MM   [As 1 / 4th part of air escapes] 

  If pressure and volume of gas remains constant then MT = constant 
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Problem 13.  If the intermolecular forces vanish away, the volume occupied by the molecules contained in 4.5 kg water at standard 
temperature and pressure will be given by     [CPMT 1989] 

(a) 36.5 m  (b) 35.4 m  (c) 11.2 litre (d) 32.11 m  

Solution : (a) 250
1018
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3
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Problem 14. The pressure P, volume V and temperature T of a gas in the jar A and the other gas in the jar B at pressure 2P, volume V/4 and 
temperature 2T, then the ratio of the number of molecules in the jar A and B will be [AIIMS 1982] 

(a) 1 : 1 (b) 1 : 2 (c) 2 : 1 (d) 4 : 1 

Solution : (d) Ideal gas equation RT
N

N
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Problem 15.  The expansion of an ideal gas of mass m at a constant pressure P is given by the straight line D. Then the expansion of the 
same ideal gas of mass 2m at a pressure P/ 2 is given by the straight line 

 

(a) E 

(b) C 

(c) B 

(d) A 

Solution : (d) From PV  MT  or T
P

M
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 represents the slope of curve drawn on volume and temperature axis. 
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  For first condition slope 




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M
 graph is D   (given in the problem)  

 For second condition slope 

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
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P

M

P

M
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2
 i.e. slope becomes four time so graph A is correct in this condition. 

Problem 16.  If the value of molar gas constant is 8.3 J/mole-K, the n specific gas constant for hydrogen in J/mole-K will be 

(a) 4.15 (b) 8.3 (c) 16.6 (d) None of these 

Solution : (a) Specific gas constant 15.4
2

3.8

)( gasof  weightMolecular 

)( constant gasUniversal 


M

R
r  Joule/mole-K. 

Problem 17.  A gas in container A is in thermal equilibrium with another gas in container B. both contain equal masses of the two gases in 
the respective containers. Which of the following can be true 

(a) BBAA VPVP   (b) BABA VVPP  ,  (c) BABA VVPP  ,  (d) 
B

B

A

A

V

P

V

P
  

Solution : (b, c) According to problem mass of gases are equal so number of moles will not be equal i.e. BA    

  From ideal gas equation RTPV    
B

BB

A

AA VPVP


  [As temperature of the container are equal] 

  From this relation it is clear that if BA PP   then 1
B

A

B

A

V

V




 i.e. BA VV   

  Similarly if BA VV   then 1
B

A

B

A

P

P




 i.e. BA PP  . 

Problem 18.  Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these bulbs at N.T.P. If one bulb is placed 
in ice and another bulb is placed in hot bath, then the pressure of the gas becomes 1.5 times. The temperature of hot bath 
will be 
 

(a) 100°C 

(b) 182°C 

(c) 256°C 

(d) 546°C 

Solution : (d) Quantity of gas in these bulbs is constant i.e. Initial No. of moles in both bulb = final number of moles 

      '
2

'
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2
    CKT  546819 . 

Problem 19.  Two containers of equal volume contain the same gas at pressures 1P  and 2P  and absolute temperatures 1T  and 2T  

respectively. On joining the vessels, the gas reaches a common pressure P and common temperature T. The ratio P/T is equal 
to 

(a) 
2

2

1

1

T

P

T

P
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2
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)( TT

TPTP




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2
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T
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Solution : (d) Number of moles in first vessel 
1

1
1

RT

VP
  and number of moles in second vessel 

2

2
2

RT

VP
  

  If both vessels are joined together then quantity of gas 

  remains same i.e 21    

   
2

2

1

1)2(

RT

VP

RT

VP

RT

VP
  

Hot bath Ice 

P1 T1  
V 

Initially 
P2 T2  

V 

P  T  
V 

P  T 
V 

Finally 
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2

2

1

1

22 T

P

T

P

T

P
  

Problem 20.  An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section 23108 m . Initially the gas is 

at 300K and occupies a volume of 33104.2 m  and the spring is in a relaxed state. The gas is heated by a small heater 

coil H. The force constant of the spring is 8000 N/m, and the atmospheric pressure is Pa5100.1  . The cylinder and 
piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and 
cylinder. There is no heat loss through heater coil wire leads and thermal capacity of the heater coil is negligible. With all the 
above assumptions, if the gas is heated by the heater until the piston moves out slowly by 0.1m, then the final temperature is 

 

(a) 400 K 

(b) 800 K 

(c) 1200 K 

(d) 300 K 

Solution : (b) 33
1 104.2 mV  ,     

2

5
01 10

m

N
PP   and  T1 = 300 K  (given) 

 If area of cross-section of piston is A and it moves through distance x then increment in volume of the gas = Ax 

and if force constant of a spring is k then force F = kx and pressure = 
A

kx

A

F
  

333
12 102.31.0108104.2   AxVV and 5

3

5
02 102

108

1.08000
10 






A

kx
PP  

 From ideal gas equation 
2

22

1

11

T

VP

T

VP
  

2

3535 102.3102

300

104.210

T

 



  KT 8002   

Problem 21.  Two identical containers each of volume 0V  are joined by a small pipe. The containers contain identical gases at temperature 

0T  and pressure 0P . One container is heated to temperature 02T  while maintaining the other at the same temperature. 

The common pressure of the gas is P and n is the number of moles of gas in container at temperature 02T  

(a) 02PP   (b) 0
3

4
PP   (c) 

0

00

3

2

RT

VP
n   (d) 

0

00

2

3

RT

VP
n   

Solution : (b, c) Initially for container A  0000 RTnVP    

  For container B  0000 RTnVP    
0

00
0

RT

VP
n   

  Total number of moles 000 2nnn   

  Since even on heating the total number of moles is conserved  

  Hence    021 2nnn     ......(i) 

  If P be the common pressure then  

  For container A 010 2TRnPV         
0

0
1

2RT

PV
n    

  For container B 020 RTnPV    
0

0
2

RT

PV
n   

  Substituting the value of 10 ,nn  and 2n  in equation (i) we get 
0

00

0

0

0

0 .2

2 RT

VP

RT

PV

RT

PV
   0

3

4
PP   

  No. of moles in container A (at temperature 02T ) = 
0

0
1

2RT

PV
n 

0

0
0

23

4

RT

V
P 










0

00

3

2

RT

VP
   








 0

3

4
 As PP  

Problem 22.  At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At the bottom of the mountain 
these read 27°C and 76 cm of Hg respectively. Comparison of density of air at the top with that of bottom is 

 

Spring 

H 

Gas 

n0, V0  
P0, T0 

Initially 
n0, V0  
P0, T0 

(A) (B) 

n1, V0  
P, 2T0 

Finally n2, V0  
P, T0 

(A) (B) 

7oC, 70 cm of Hg 

27oC, 76 cm of Hg 
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(a) 75/76 

(b) 70/76 

(c) 76/75 

(d) 76/70 

Solution : (a) Ideal gas equation, in terms of density 
22

2

11

1

T

P

T

P


constant  

1

2

2

1

2

1

T

T

P

P





 

  
76

75

280

300

76

70

Top

Bottom

Bottom

Top

Bottom

Top


T

T

P

P




 

 11.5 Vander Waal's Gas Equation. 

All real gases do not obey the ideal gas equation. In order to explain the behaviour of real gases following two modification 
are considered in ideal gas equation. 

(i) Non-zero size of molecule : A certain portion of volume of a gas is covered by the molecules themselves. Therefore the space 

available for the free motion of molecules of gas will be slightly less than the volume V of a gas. 

Hence the effective volume becomes (V – b) 

(ii) Force of attraction between gas molecules : Due to this, molecule do not exert that force on the wall which they would 

have exerted in the absence of  intermolecular force. Therefore the observed pressure P of the gas will be less than that present in 

the absence of intermolecular force. Hence the effective pressure becomes 









2V

a
P  

The equation obtained by using above modifications in ideal gas equation is called Vander Waal’s equation or real gas 

equation. 

Vander Waal's gas equations 

For 1 mole of gas RTbV
V

a
P 








 )(

2
 

For  moles of gas RTbV
V

a
P 

















 )(

2

2

 

 

Here a and b are constant called Vander Waal’s constant. 

Dimension : [a] = ][ 25 TML  and [b] = [L3] 

Units : a = N  m4   and b = m3. 

 11.6 Andrews Curves. 

The pressure (P) versus volume (V) curves for actual gases are called Andrews curves. 

(1) At 350°C, part AB represents vapour phase of water, in this part Boyle’s law 

is obeyed 









V
P

1
. Part BC represents the co-existence of vapour and liquid 

phases. At point C, vapours completely change to liquid phase. Part CD is parallel to 
pressure axis which shows that compressibility of the water is negligible. 

(2) At 360°C portion representing the co-existence of liquid vapour phase is 
shorter. 

(3) At 370°C this portion is further decreased. 

(4) At 374.1°C, it reduces to point (H) called critical point and the temperature 374.1°C is called critical temperature (Tc) of 
water. 

G 
Gas 

380°C 

370°C 

360°C 

350°C C 

F 

A 

Vapour 

Liquid 

Liquid 
vapour 
region 

374.1°C 

P 

V 

H 

Andrews curve for water 

B 

E 

D 
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(5) The phase of water (at 380°C) above the critical temperature is called gaseous phase. 

Critical temperature, pressure and volume 

The point on the P-V curve at which the matter gets converted from gaseous state to liquid state is known as critical point. 
At this point the difference between the liquid and vapour vanishes i.e. the densities of liquid and vapour become equal. 

(i) Critical temperature (Tc) : The maximum temperature below which a gas can be liquefied by pressure alone is called 

critical temperature and is characteristic of the gas. A gas cannot be liquefied if its temperature is more than critical temperature. 

  CO2 (304.3 K),  O2 (–118°C),   N2  (–147.1°C)    and   H2O (374.1°C)  

(ii) Critical pressure (Pc) : The minimum pressure necessary to liquify a gas at critical temperature is defined as critical 

pressure. 

  CO2 (73.87 bar)   and    O2  (49.7atm) 

(iii) Critical volume (Vc) : The volume of 1 mole of gas at critical pressure and critical temperature is defined as critical 

volume. 

  CO2 (95 10–6 m3) 

(iv) Relation between Vander Waal’s constants  and Tc, Pc, Vc :  

  
Rb

a
Tc

27

8
 , 

227b

a
Pc  , bVc 3 ,           

c

c

P

TR
a

22

64

27
 , 










c

c

P

TR
b

8
    and     R

T

VP

c

cc

8

3
  

 

Sample problems based on Vander Waal gas equation 

Problem 23.  Under which of the following conditions is the law PV = RT obeyed most closely by a real gas 

[NCERT 1974; MP PMT 1994, 97; MP PET 1999; AMU 2001] 

(a) High pressure and high temperature (b) Low pressure and low temperature 

(c) Low pressure and high temperature (d) High pressure and low temperature 

Solution : (c) At low pressure and high temperature real gas obey PV = RT i.e. they behave as ideal gas because at high temperature we 

can assume that there is no force of attraction or repulsion works among the molecules and the volume occupied by the 

molecules is negligible in comparison to the volume occupied by the gas. 

Problem 24.  The equation of state of a gas is given by )(
2

bRTV
V

aT
P c 













 , where a, b, c and R are constants. The isotherms can 

be represented by nm BVAVP  , where A and B depend only on temperature then 

[CBSE PMT 1995] 

(a) cm   and 1n  (b) cm   and 1n  (c) cm   and 1n  (d) cm   and 1n  

Solution : (a) bRTV
V

aT
P c 
















2

 cc bVRTVVaTP   12   12 )()(   VaTVbRTP c  

  By comparing this equation with given equation nm BVAVP   we get cm   and 1n . 

Problem 25.  An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from 

the ideal gas behaviour. The variation of 
RT

PV
 with P is shown in the diagram. The correct variation will correspond to  

(a) Curve A  

(b) Curve B  

(c) Curve C 

(d) Curve D 

PV/RT 

P (atm) 0, 0 

A 
B 

C 
D 

1.0 

2.0 

20 40 60 80 100 
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Solution : (b)  At lower pressure we can assume that given gas behaves as ideal gas so 
RT

PV
constant but when pressure increase, the 

decrease in volume will not take place in same proportion so 
RT

PV
 will increases. 

Problem 26.  The conversion of ideal gas into solids is 

(a) Possible only at low pressure (b) Possible only at low temperature 

(c) Possible only at low volume (d) Impossible 

Solution : (d) Because there is zero attraction between the molecules of ideal gas. 
 

 11.7 Various Speeds of Gas Molecules. 

The motion of molecules in a gas is characterised by any of the following three speeds. 

(1) Root mean square speed : It is defined as the square root of mean of squares of the speed of different molecules i.e. 

N

vvvv
vrms

....2
4

2
3

2
2

2
1 

  

(i) From the expression for pressure of ideal gas 2

3

1
rmsv

V

Nm
P   

 
gasof  Mass

33 PV

Nm

PV
vrms 



P3
     










V

gasof  Mass
 As   

(ii) 
gasof  Mass

3PV
vrms   

M

RT

M

RT 33





 

(iii) 
m

kT

MN

kTN

M

RT
v

A

A
rms

333
     [As M = NAm  and  R = NAk] 

 Root mean square velocity 
m

kT

M

RTP
vrms

333



 

      Important points 

(i) With rise in temperature rms speed of gas molecules increases as Tvrms  . 

(ii) With increase in molecular weight rms speed of gas molecule decreases as 
M

vrms
1

 . 

e.g., rms speed of hydrogen molecules is four times that of oxygen molecules at the same temperature. 

(iii) rms speed of gas molecules is of the order of km/s  

e.g., At NTP for hydrogen gas sm
M

RT
vrms /1840

102

27331.833
)(

3





 . 

(iv) rms speed of gas molecules is 


3
 times that of speed of sound in gas 

As   
M

RT
vrms

3
    and   

M

RT
vs


       srms vv



3
  

(v) rms speed of gas molecules does not depends on the pressure of gas (if temperature remains constant) because P   

(Boyle’s law) if pressure is increased n times then density will also increases by n times but vrms remains constant. 

[As if M is the molecular weight of gas  

PV = RT   and Mass of gas =  M ] 
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(vi) Moon has no atmosphere because vrms of gas molecules is more than escape velocity (ve). 

A planet or satellite will have atmosphere only and only if erms vv   

(vii) At T = 0; vrms = 0 i.e. the rms speed of molecules of a gas is zero at 0 K. This temperature is called absolute zero. 

(2) Most probable speed : The particles of a gas have a range of speeds. This is defined as the speed which is possessed by 
maximum fraction of total number of molecules of the gas. e.g., if speeds of 10 molecules of a gas are 1, 2, 2, 3, 3, 3, 4, 5, 6, 6 km/s, 
then the most probable speed is 3 km/s, as maximum fraction of total molecules possess this speed. 

Most probable speed 
m

kT

M

RTP
vmp

222



 

(3) Average speed : It is the arithmetic mean of the speeds of molecules in a gas at given temperature. 

  
N

vvvv
vav

.....4321 
  

and according to kinetic theory of gases  

Average speed 
m

kT

M

RTP
vav



888
  

Note :   vrms > vav > vmp (order remembering trick) (RAM) 

   vrms : vav : vmp = 2:5.2:32:
8

:3 


 

  For oxygen gas molecules vrms = 461 m/s,  vav = 424.7 m/s  and  vrms = 376.4 m/s  

Sample Problems based on Various speeds  

Problem 27.  At room temperature, the rms speed of the molecules of certain diatomic gas is found to be 1930 m/s. The gas is  

(a) 2H  (b) 2F  (c) 2O  (d) 2Cl  

Solution : (a) Root means square velocity sm
M

RT
vrms /1930

3
  (given) 

  gmkg
RT

M 2102
19301930

30031.83

)1930(

3 3

2





   i.e. the gas is hydrogen. 

Problem 28.  Let A and B the two gases and given : 
B

B

A

A

M

T

M

T
.4 ; where T is the temperature and M is the molecular mass. If AC  

and BC  are the rms speed, then the ratio 
B

A

C

C
 will be equal to   [BHU 2003] 

(a) 2 (b) 4 (c) 1 (d) 0.5 

Solution : (a) As 
M

RT
vrms

3
     24

/

/


BA

BA

B

A

MM

TT

C

C
       








 given 4 As

B

A

B

A

M

M

T

T
 

Problem 29.  The rms speed of the molecules of a gas in a vessel is 400 ms–1. If half of the gas leaks out at constant temperature, the rms 
speed of the remaining molecules will be   [Kerala (Engg.) 2002] 

(a) 800 ms–1 (b) 12400 ms  (c) 400 ms–1 (d) 200 ms–1 

Solution : (c) Root mean square velocity does not depends upon the quantity of gas. For a given gas and at constant temperature it always 
remains same. 

Problem 30.  The root mean square speed of hydrogen molecules at 300 K is 1930 m/s. Then the root mean square speed of oxygen 
molecules at 900 K will be     [MH CET 2002] 
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(a) sm /31930  (b) 836 m/s (c) 643 m/s (d) sm /
3

1930
 

Solution : (b) 
M

RT
vrms

3
          

2

2

2

2

2

2

O

O

H

H

O

H

T

M

M

T

v

v
        

900

32

2

3001930

2


Ov

    smvO /836
4

31930
2




 . 

Problem 31.  At what temperature is the root mean square velocity of gaseous hydrogen molecules is equal to that of oxygen molecules at 
47°C     [CPMT 1985; MP PET 1997; RPET 1999; AIEEE 2002] 

(a) 20 K (b) 80 K (c) – 73 K (d) 3 K 

Solution : (a) For oxygen 
2

2

2

3

O

O
O

M

RT
v   and  For hydrogen 

2

2

2
3

H

H
H

M

T
Rv    

According to problem 
2

2
3

O

O

M

RT


2

23
H

H

M

T
R  

   
2

2

2

2

H

H

O

O

M

T

M

T
   

232

27347 2HT



  KTH 202

32

320
2

 . 

Problem 32.  Cooking gas containers are kept in a lorry moving with uniform speed. The temperature of the gas molecules inside will   

(a) Increase   (b) Decrease  

(c) Remain same   (d) Decrease for some, while increase for others 

Solution : (c) If a lorry is moving with constant velocity then the rmsv  of gas molecule inside the container will not change and we know 

that 2
rmsvT  . So temperature remains same. 

Problem 33.  The speeds of 5 molecules of a gas (in arbitrary units) are as follows : 2, 3, 4, 5, 6. The root mean square speed for these 
molecules is       [MP PMT 2000] 

(a) 2.91 (b) 3.52 (c) 4.00 (d) 4.24 

Solution : (d) 
5

65432

5

222222
5

2
4

2
3

2
2

2
1 





vvvvv

vrms 24.420
5

100
  

Problem 34. Gas at a pressure 0P  in contained as a vessel. If the masses of all the molecules are halved and their speeds are doubled, the 

resulting pressure P will be equal to 

[NCERT 1984; MNR 1995; MP PET 1997; MP PMT 1997; RPET 1999; UPSEAT 1999, 2000] 

(a) 04P  (b) 02P  (c) 0P  (d) 
2
0P  

Solution : (b) 2

3

1
rmsv

V

mN
P       2

rmsvmP   so  2
22/

2

1

1

1

1

2

1

2

1

2

1

2 


















v

v

m

m

v

v

m

m

P

P
  012 22 PPP   

Problem 35.  Let rmsvv ,  and mpv  respectively denote the mean speed, root mean square speed and most probable speed of the 

molecules in an ideal monoatomic gas at absolute temperature T. The mass of a molecule is m. Then 

[IIT-JEE 1998] 

(a) No molecule can have speed greater than rmsv2   

(b) No molecule can have speed less than 2/mpv  

(c) rmsmp vvv   

(d) The average kinetic energy of a molecule is 2

4

3
mpmv  

Solution : (c, d) We know that 
M

RT
vrms

3
 ,  

M

RT
vav



8
  and  

M

RT
vmp 2  



 
 
Magic World of Physics 
 Kinetic Theory of Gases 15 

      2:5.2:3:: mpavrms vvv   so rmsavmp vvv   

   and  
2

3


mp

rms

v

v
 or 22

2

3
mprms vv     Average kinetic energy 22

2

3

2

1

2

1
mprms vmvm  2

4

3
mpmv . 

Problem 36.  The root mean square speed of the molecules of a diatomic gas is v. When the temperature is doubled, the molecules 
dissociate into two atoms. The new root mean square speed of the atom is  [Roorkee 1996] 

(a) v2  (b) v (c) 2v (d) 4v 

Solution : (c) 
M

RT
vrms

3
 . According to problem T will becomes T/2 and M will becomes M/2 so the value of rmsv  will increase by 

24  times i.e. new root mean square velocity will be 2v. 

Problem 37.  The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and 25 /100.1 mN  pressure. When the 

temperature is 127°C and pressure is 25 /105.0 mN , the rms velocity in m/sec will be  

[AIIMS 1985; MP PET 1992] 

(a) 
3

2100
 (b) 2100  (c) 

3

400
 (d) None of these 

Solution : (c) Change in pressure will not affect the rms velocity of molecules. So we will calculate only the effect of temperature. 

As   Tvrms     
4

3

400

300

400

300 
o

o

v

v
    

4

3200

400


v

   smv /
3

400

3

2200
400 


 . 

Problem 38.  Which of the following statement is true     [IIT-JEE 1981] 

(a) Absolute zero degree temperature is not zero energy temperature 

(b) Two different gases at the same temperature pressure have equal root mean square velocities 

(c) The rms speed of the molecules of different ideal gases, maintained at the same temperature are the same 

(d) Given sample of 1cc of hydrogen and 1cc of oxygen both at N.T.P.; oxygen sample has a large number of molecules 

Solution : (a) At absolute temperature kinetic energy of gas molecules becomes zero but they possess potential energy so we can say that 
absolute zero degree temperature is not zero energy temperature. 

Problem 39.  The ratio of rms speeds of the gases in the mixture of nitrogen oxygen will be 

(a) 1 : 1 (b) 1:3  (c) 7:8  (d) 7:6  

Solution : (c) 
M

RT
vrms

3
   

7

8

28

32

2

2

2

2 
N

O

O

N

M

M

v

v
 

Problem 40.  A vessel is partitioned in two equal halves by a fixed diathermic separator. Two different ideal gases are filled in left (L) and 

right (R) halves. The rms speed of the molecules in L part is equal to the mean speed of molecules in the R part. Then the 

ratio of the mass of a molecule in L part to that of a molecule in R part is 

(a) 
2

3
 

(b) 4/  

(c) 3/2  

(d) 8/3  

Solution : (d) Root means square velocity of molecule in left part 
L

rms
m

KT
v

3
  

  Mean or average speed of molecule in right part 
R

av
m

KT
v



8
  

R L 
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  According to problem 
RL m

KT

m

KT



83
    

RL mm 

83
     

8

3


R

L

m

m
. 

Problem 41.  An ideal gas ( = 1.5) is expanded adiabatically. How many times has the gas to be expanded to reduce the root mean square 

velocity of molecules 2 times 

(a) 4 times (b) 16 times (c) 8 times (d) 2 times 

Solution : (b) To reduce the rms velocity two times, temperature should be reduced by four times (As Tvrms  ) 

   TT 1      
4

2

T
T  ,  VV 1   

  From adiabatic law 1TV constant we get 4
2

1

1

1

2 









T

T

V

V


        1

1

1

2 )4(  

V

V
 [ = 3/2 given] 

    12/3

1

12 )4(  VV 2
1 )4(V 116 V   16

1

2 
V

V
 

 11.8 Kinetic Energy of Ideal Gas. 

Molecules of ideal gases possess only translational motion. So they possess only translational kinetic energy. 
 

Quantity of gas Kinetic energy 

Kinetic energy of a gas molecule (Emolecule)  
2

2

1
rmsvm  










m

kT
m

3

2

1
kT

2

3
   













m

kT
vrms

3
 As  

Kinetic energy of 1 mole (M gram) gas (Emole) 
2

2

1
rmsvM

M

RT
M

3

2

1
 RT

2

3
   














M

RT
vrms

3
 As  

Kinetic energy of 1 gm gas (Egram)  
T

Nm

Nk
T

M

R

A

A

2

3

2

3
 rTT

m

k

2

3

2

3
  

 

Here m = mass of each molecule, M = Molecular weight of gas and NA = Avogadro number = 6.023  1023 

      Important points 

(1) Kinetic energy per molecule of gas does not depends upon the mass of the molecule but only depends upon the 
temperature of the gas. 

As  kTE
2

3
   or   E  T  i.e. molecules of different gases say He, H2 and O2 etc. at same temperature will have same 

translational kinetic energy though their rms speed are different. 













m

kT
vrms

3
 

(2) Kinetic energy per mole of gas depends only upon the temperature of gas. 

(3) Kinetic energy per gram of gas depend upon the temperature as well as molecular weight (or mass of one molecule) of 
the gas. 

  T
m

k
Egram

2

3
     

m

T
Egram   

From the above expressions it is clear that higher the temperature of the gas, more will be the average kinetic energy 
possessed by the gas molecules at T = 0, E = 0 i.e. at absolute zero the molecular motion stops. 

Sample Problems based on Kinetic energy  
 



 
 
Magic World of Physics 
 Kinetic Theory of Gases 17 

Problem 42.  Read the given statements and decide which is/are correct on the basis of kinetic theory of gases [MP PMT 2003] 

(I) Energy of one molecule at absolute temperature is zero 

(II) rms speeds of different gases are same at same temperature 

(III) For one gram of all ideal gas kinetic energy is same at same temperature 

(IV) For one mole of all ideal gases mean kinetic energy is same at same temperature 

(a) All are correct (b) I and IV are correct (c) IV is correct (d) None of these 

Solution : (c) If the gas is not ideal then its molecule will possess potential energy. Hence statement (I) is wrong. 

rms speed of different gases at same temperature depends on its molecular weight 











M
vrms

1
. Hence statement (II) also 

wrong. 

Kinetic energy of one gram gas depends on the molecular weight 









M
Egm

1
. Hence statement (III) also wrong. 

 But K.E. of one mole of ideal gas does not depends on the molecular weight 







 RTE

2

3
. Hence (IV) is correct. 

Problem 43.  At which of the following temperature would the molecules of a gas have twice the average kinetic energy they have at 20°C   

(a) 40°C (b) 80°C (c) 313°C (d) 586°C 

Solution : (c) TE      
1

2

1

2

T

T

E

E
    

)27320(

2 2

1

1




T

E

E
  CKT  31358622932 . 

Problem 44.  A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300 K. The ratio of the average rotational 

kinetic energy per 2O  molecule to that per 2N  molecule is  [IIT-JEE 1998; DPMT 2000] 

(a) 1 : 1 

(b) 1 : 2 

(c) 2 : 1 

(d) Depends on the moments of inertia of the two molecules 

Solution : (a) Kinetic energy per degree of freedom kT
2

1
  

As diatomic gas possess two degree of freedom for rotational motion therefore rotational K.E. kTkT 









2

1
2  

In the problem both gases (oxygen and nitrogen) are diatomic and have same temperature (300 K) therefore ratio of average 
rotational kinetic energy will be equal to one. 

Problem 45.  A gas mixture consists of molecules of type 1, 2 and 3 with molar masses 321 mmm  . rmsv  and K  are the rms speed 

and average kinetic energy of the gases. Which of the following is true   [AMU (Engg.) 2000] 

(a) 321 )()()( rmsrmsrms vvv   and 321 )()()( KKK   (b) 321 )()()( rmsrmsrms vvv   and 321 )()()( KKK   

(c) 321 )()()( rmsrmsrms vvv   and 321 )()()( KKK   (d) 321 )()()( rmsrmsrms vvv   and 321 )()()( KKK   

Solution : (a) The rms speed depends upon the molecular mass 
M

vrms
1

  but kinetic energy does not depends on it 0ME   

 In the problem 321 mmm     321 )()()( rmsrmsrms vvv  but )()()( 321 KKK   

Problem 46.  The kinetic energy of one gram mole of a gas at normal temperature and pressure is (R = 8.31 J/mole-K) 

[AFMC 1998; MH CET 1999; Pb. PMT 2000] 

(a) J41056.0   (b) J2103.1   (c) J2107.2   (d) J3104.3   

Solution : (d) 3104.327331.8
2

3

2

3
 RTE Joule  
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Problem 47.  The average translational kinetic energy of 2O  (molar mass 32) molecules at a particular temperature is 0.048 eV. The 

translational kinetic energy of 2N  (molar mass 28) molecules in eV at the same temperature is 

[IIT-JEE 1997 Re-Exam] 

(a) 0.0015 (b) 0.003 (c) 0.048 (d) 0.768 

Solution : (c) Average translational kinetic energy does not depends upon the molar mass of the gas. Different gases will possess same 
average translational kinetic energy at same temperature. 

Problem 48.  The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are J211021.6   

and 484 m/s respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour)   

(a) smJ /968,1042.12 21   (b) smJ /684,1078.8 21  

(c) smJ /968,1021.6 21   (d) smJ /684,1042.12 21  

Solution : (d) TE   but Tvrms   

  i.e. if temperature becomes twice then energy will becomes two time i.e. 2  6.21  10–21 = 12.42  10–21 J 

  But rms speed will become 2  times i.e. sm/6842484  . 

Problem 49.  A box containing N molecules of a perfect gas at temperature 1T  and pressure 1P . The number of molecules in the box is 

doubled keeping the total kinetic energy of the gas same as before. If the new pressure is 2P  and temperature 2T , then   

(a) 12 PP  , 12 TT   (b) 12 PP  , 
2
1

2

T
T   (c) 12 2PP  , 12 TT   (d) 12 2PP  , 

2
1

2

T
T   

Solution : (b) Kinetic energy of N molecule of gas NkTE
2

3
  

  Initially 111
2

3
kTNE   and finally 222

2

3
kTNE   

  But according to problem  21 EE   and 12 2NN    2111 )2(
2

3

2

3
kTNkTN    

2
1

2

T
T   

  Since the kinetic energy constant   2211
2

3

2

3
kTNkTN    2211 TNTN     NT = constant 

  From ideal gas equation of N molecule NkTPV    

    2211 VPVP          21 PP         21 As[ VV   and NT = constant] 

Problem 50.  Three closed vessels A, B and C are at the same temperature T and contain gases which obey the Maxwellian distribution of 

velocities. Vessel A contains only 2O , B only 2N  and C a mixture of equal quantities of 2O  and 2N . If the average speed 

of the 2O  molecules in vessel A is 1V , that of the 2N  molecules in vessel B is 2V , the average speed of the 2O  molecules 

in vessel C is (where M is the mass of an oxygen molecule)  [IIT-JEE 1992] 

(a) 2/)( 21 VV   (b) 1V  (c) 2/1
21 )( VV  (d) MkT /3  

Solution : (b) Average speed of gas molecule 
m

kT
vav



8
 . It depends on temperature and molecular mass. So the average speed of 

oxygen will be same in vessel A and vessel C and that is equal to 1V . 

Problem 51.  The graph which represent the variation of mean kinetic energy of molecules with temperature t°C is 

 

(a)  (b)  (c)  (d)  

 

 
 

E 

t 

E 

t 

E 

t 

E 

t 
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Solution : (c) Mean K.E. of gas molecule kTE
2

3
 )273(

2

3
 tk  where T = temperature is in kelvin and t = is in centigrade 

   ktkE 273
2

3

2

3
  k = Boltzmann's constant 

  By comparing this equation with standard equation of straight line cmxy   

We get km
2

3
  and kc 273

2

3
 . So the graph between E and t will be straight line with positive intercept on E-axis and 

positive slope with t-axis. 

 11.9 Gas Laws. 

(1) Boyle’s law : For a given mass of an ideal gas at constant temperature, the volume of a gas is inversely proportional to its 

pressure. 

i.e.  
P

V
1

     or   PV = constant or  2211 VPVP   [If m and T are constant] 

(i)  PV = 










m
P  constant   [As volume 



m
 ] 

 constant


P
 or 

2

2

1

1



PP
   [As m = constant] 

(ii) PV = constant








n

N
P    [As number of molecules per unit volume 

V

N
n    

n

N
V  ] 

  constant
n

P
 or  

2

2

1

1

n

P

n

P
   [As N = constant] 

(iii) According to kinetic theory of gases 2

3

1
rmsv

V

mN
P   

  T
V

P 
gasof  mass

   [As Tvrms   and  mN = Mass of gas] 

If mass and temperature of gas remain constant then 
V

P
1

 . This is in accordance with Boyle’s law. 

(iv) Graphical representation : If m and T are constant  

 

 

 

 

 

 
 

Sample Problems based on Boyle's law 
 

Problem 52.  At constant temperature on increasing the pressure of a gas by 5% will decrease its volume by [MP PET 2002] 

(a) 5% (b) 5.26% (c) 4.26% (d) 4.76% 

PV 

V 

P 

1/V 

V 

1/P 

P 

V 

PV 

P 



Shahjahan Physics 
 
 
 20 Kinetic Theory of Gases 

Solution : (d) If PP 1  then  PP2 5% of P = 1.05 P  

  From Boyle’s law PV = constant       
P

P

P

P

V

V

05.12

1

1

2 
105

100
  

  Fractional change in volume
1

12

V

VV

V

V 





105

5

105

105100



  

   Percentage change in volume %76.4%100
105

5
%100 



V

V
 i.e. volume decrease by 4.76%. 

Problem 53.  A cylinder contained 10 kg of gas at pressure 27 /10 mN . The quantity of gas taken out of cylinder if final pressure is 

mN /105.2 6  is (assume the temperature of gas is constant)    [EAMCET (Med.) 1998] 

(a) Zero (b) 7.5 kg (c) 2.5 kg (d) 5 kg 

Solution : (b) At constant temperature for the given volume of gas 
2

1

2

1

m

m

P

P
  

  
2

6

7 10

105.2

10

m



     kgm 5.2

10

10105.2
7

6

2 


  

  The quantity of gas taken out of the cylinder = 10 – 2.5 = 7.5 kg. 

Problem 54.  If a given mass of gas occupies a volume of 10 cc at 1 atmospheric pressure and temperature of 100°C (373.15 K). What will 
be its volume at 4 atmospheric pressure; the temperature being the same [NCERT 1977] 

(a) 100 cc (b) 400 cc (c) 2.5 cc (d) 104 cc 

Solution : (c) 
V

P
1

   
2

1

1

2

P

P

V

V
   ccV 5.2

4

1
102 








  

Problem 55.  An air bubble of volume 0V  is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant 

temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before touching the surface 

will be (density of water is ) 

(a) 0V  (b) )/(0 PghV   (c) 











P

gh

V


1

0  (d) 









P

gh
V


10  

Solution : (d) According to Boyle’s law multiplication of pressure and volume will remains constant at the bottom and top. 

If P is the atmospheric pressure at the top of the lake and the volume of 

bubble is V then from 2211 VPVP   

  PVVghP  0)(    0V
P

ghP
V 







 



  

   









P

gh
VV


10  

Problem 56.  The adjoining figure shows graph of pressure and volume of a gas at two temperatures 1T  and 2T . Which of the following 

interferences is correct 

 

(a) 21 TT   

(b) 21 TT   

(c) 21 TT   

(d) No interference can be drawn 

P2V2 

(P1 V1) 

h 
 

T1 

T2 

P 

V 

p 

V1 V2 
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Solution : (c) For a given pressure, volume will be more if temperature is more (Charle’s law) 

  From the graph it is clear that V2 > V1  

   T2 > T1  

 

(2) Charle's law 

(i) If the pressure remains constant, the volume of the given mass of a gas increases or decreases by 
15.273

1
 of its volume 

at 0°C for each 1°C rise or fall in temperature. 

  







 tVVt

15.273

1
10 . This is Charle’s law for centigrade scale. 

(ii) If the pressure remaining constant, the volume of the given mass of a gas is 

directly proportional to its absolute temperature.  

  V  T or     constant
T

V
    or      

2

2

1

1

T

V

T

V
    [If m and P are constant] 

(iii)  
T

V
constant

T

m


      [As volume 



m
V  ] 

or   constantT      or  2211 TT       [As m = constant] 

(iv) According to kinetic theory of gases  2

3

1
rmsv

V

mN
P    

or  T
V

P
gasof  Mass

  

If mass and pressure of the gas remains constant then V  T.  This is in accordance with Charles law. 

(v) Graphical representation : If m and P are constant  

 

 

 

 

 

 

Sample problems based on Charle's law 

Problem 57.  A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at 27°C is V then volume at 327°C is  

(a) V (b) 3V (c) 2V (d) V/2 

Solution : (c) From Charle’s law TV      
1

2

1

2

T

T

V

V
 2

300

600

27327

273327





    .22 VV   

Problem 58.  Hydrogen gas is filled in a balloon at 20°C. If temperature is made 40°C, pressure remaining same, what fraction of hydrogen 
will come out      [MP PMT 2002] 

(a) 0.07 (b) 0.25 (c) 0.5 (d) 0.75 

Solution : (a) As TV    
1

2

1

2

T

T

V

V
     12

293

313
VV 








  

1/V 

            T  

V/T 

T or 1/T 

V/T 

V or 1/V 

V 

            T 

V 

            1/T 

[All temperature T are in kelvin] 

– 273.15 O 
t(°C) 

V0 

Vt 
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 Fraction of gas comes out 07.0
293

20293

313

1

11

1

12 














V

VV

V

VV
. 

 

Problem 59.  The expansion of unit mass of a perfect gas at constant pressure is shown in the diagram. Here  

 

(a) a = volume, b = °C temperature 

(b) a = volume, b = K temperature 

(c) a = °C temperature, b = volume 

(d) a = K temperature, b = volume 

Solution : (c) In the given graph line have a positive slop with X-axis and negative intercept on Y-axis.  

So we can write the equation of line y = mx – c    ...... (i) 

According to Charle’s law 0
0

273
Vt

V
Vt  , by rewriting this equation we get  

   273
273

0









 tV

V
t     ......(ii) 

  By comparing (i) and (ii) we can say that time is represented on Y-axis and volume in X-axis.  

Problem 60.  A gas is filled in the cylinder shown in the figure. The two pistons are joined by a string. If the gas is heated, the pistons will 

 

(a) Move towards left 

(b) Move towards right 

(c) Remain stationary 

(d) None of these 

Solution : (b) When temperature of gas increases it expands. As the cross-sectional area of right piston is more, therefore greater force will 
work on it (because F = PA). So piston will move towards right. 

Problem 61.  An ideal gas is initially at a temperature T and volume V. Its volume is increased by V due to an increase in temperature 

T, pressure remaining constant. The quantity 
TV

V




  varies with temperature as 

 

(a)  (b)  (c)  (d)  

 

 

 

Solution : (c) From ideal gas equation PV = RT  …..(i) 

  or    TRVP    …..(ii) 

  Dividing equation (ii) by (i) we get 
T

T

V

V 



  





TTV

V 1
             (given) 

   
T

1
 . So the graph between  and T will be rectangular hyperbola. 

 

(3) Gay-Lussac’s law or pressure law 

 

T + T T 

(Temp. K) 

 

T + T T 

(Temp. K) 

 

T + T T 

(Temp. K) 

 

T + T T 

(Temp. K) 

a 

b 
O 

Gas 
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(i) The volume remaining constant, the pressure of a given mass of a gas increases or decreases by 
15.273

1
 of its pressure 

at 0°C for each 1°C rise or fall in temperature. 

  







 tPPt

15.273

1
10  

This is pressure law for centigrade scale. 

(ii) The volume remaining constant, the pressure of a given mass of a gas is 
directly proportional to its absolute temperature. 

  P  T       or          constant
T

P
 or 

2

2

1

1

T

P

T

P
   [If m and V are constant] 

(iii) According to kinetic theory of gases  2

3

1
rmsv

V

Nm
P    [As Tvrms 2 ] 

or  T
V

P
gasof  mass

  

If mass and volume of gas remains constant then P  T.  This is in accordance with Gay Lussac’s law. 

(4) Graphical representation : If m and V are constants  

 

 

 

 

 

 

Sample problems based on Gay Lussac's law 

Problem 62.  On 0°C pressure measured by barometer is 760 mm. What will be pressure on 100°C [AFMC 2002] 

(a) 760 mm (b) 730 mm (c) 780 mm (d) None of these 

Solution : (d) From Gay Lussac’s law 
273

373

2730

273100

1

2

1

2 













T

T

P

P
   mmP 1038760

273

373
2 








 . 

Problem 63.  If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C, the initial temperature must be   

(a) 250 K (b) 250°C (c) 2500 K (d) 25°C 

Solution : (a) PP 1 , T1 = T ,  PP2  (0.4% of P)
250100

4.0 P
PPP    12  TT  

From Gay Lussac's law  
2

1

2

1

T

T

P

P
     

1

250





T

T

P
P

P
  [As V = constant for closed vessel] 

By solving we get T = 250 K. 

Problem 64.  Pressure versus temperature graph of an ideal gas of equal number of moles of different volumes are plotted as shown in 
figure. Choose the correct alternative 

(a) 4321 , VVVV   and 32 VV   

(b) 4321 , VVVV   and 32 VV   

(c) 4321 VVVV    

(d) 1234 VVVV   

– 273.15 O 

t(°C) 

P0 

Pt 

P 

T 

P/T 

T or 1/T T 

1/P P/T 

P or 1/P 1/T 

P 

[All temperature T are in kelvin] 

P 

T 

1 

3 2 

4 
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Solution : (a) From ideal gas equation RTPV     T
V

R
P


  

  Comparing this equation with mxy   

  Slope of line
V

R
m


 tan   i.e. 

tan

1
V  

  It means line of smaller slope represent greater volume of gas. 

  For the given problem figure  

Point 1 and 2 are on the same line so they will represent same volume i.e. 21 VV    

Similarly point 3 and 4 are on the same line so they will represent same volume i.e. 43 VV   

  But 31 VV   (= 4V ) or 32 VV   (= 4V ) as slope of line 1-2 is less than 3-4. 

 

(5) Avogadro’s law : Equal volume of all the gases under similar conditions of temperature and pressure contain equal 
number of molecules. 

According to kinetic theory of gases  2

3

1
rmsvNmPV   

For first gas, 2
)1(11

3

1
rmsvNmPV            …..(i) 

For second gas, 2
)2(22

3

1
rmsvNmPV           …..(ii) 

From (i) and (ii)         2
222

2
111 rmsrms vNmvNm          …..(iii) 

As the two gases are at the same temperature kTvmvm rmsrms
2

3

2

1

2

1 2
22

2
11   2

22
2

11 rmsrms vmvm   …..(iv) 

So from equation (iii) we can say that  21 NN  . This is Avogadro’s law. 

(i) Avogadro’s number (NA) : The number of molecules present in 1 gm mole of a gas is defined as Avogadro number. 

2310023.6 AN per gm mole 2610023.6  per kg mole. 

(ii) At S.T.P. or N.T.P. (T = 273 K and P = 1 atm) 22.4 litre of each gas has 2310023.6   molecule. 

(iii) One mole of any gas at S.T.P. occupy 22.4 litre of volume 

Example : 32 gm oxygen,  28 gm nitrogen and  2gm hydrogen occupy the same volume at S.T.P. 

(iv) For any gas 1 mole = M gram = 22.4 litre = 6.023  1023 molecule. 

Sample problems based on Avogadro's Law 

Problem 65.  Temperature of an ideal gas is T K and average kinetic energy is 231007.2 E T Joule/molecule. Number of molecules 

in 1 litre gas at S.T.P. will be     [CPMT 1994] 

(a) 221068.2   (b) 251068.2   (c) 281068.2   (d) 221068.1   

Solution : (a) As we know that at S.T.P. 22.4 litre of gas contains 2310023.6   molecules 

       1 litre of gas contain 22
23

1068.2
4.22

10023.6



 molecules. 

P 

T 

 

V = constant 
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Problem 66.  The average kinetic energy per molecule of helium gas at temperature T is E and the molar gas constant is R, then 

Avogadro’s number is 

(a) 
E

RT

2
 (b) 

E

RT3
 (c) 

RT

E

2
 (d) 

E

RT

2

3
 

Solution : (d) Average kinetic energy per unit molecule kTE
2

3
   

T

E
k

3

2
  

 But Avagadro number
)3/2( TE

R

k

R
N A    

E

RT
N A

2

3
 . 

Problem 67.  One mole of a gas filled in a container at N.T.P., the number of molecules in 1 cm3 of volume will be 

(a) 22400/1002.6 23  (b) 231002.6   (c) 1/22400 (d) 76/1002.6 23  

Solution : (a)  Number of molecule in 22.4 litre gas at N.T.P. 2310023.6   

  or number of molecule in 2333 10023.6104.22  cm   [As  22.4 litre 33104.22 cm ] 

   Number of molecules in 
22400

10023.6
1

23
3 
cm . 

 

(6) Grahm’s law of diffusion : When two gases at the same pressure and temperature are allowed to diffuse into each other, 
the rate of diffusion of each gas is inversely proportional to the square root of the density of the gas. 

We know 


P
vrms

3
  or 



1
rmsv   

and rate of diffusion of a gas is proportional to its rms velocity i.e., rmsvr   

 


1
r  or 

1

2

2

1






r

r
 

(7) Dalton’s law of partial pressure : The total pressure exerted by a mixture of non-reacting gases occupying a vessel is 
equal to the sum of the individual pressures which each gases exert if it alone occupied the same volume at a given temperature. 

For n gases nPPPPP .....321   

where P = Pressure exerted by mixture and nPPPP ......,,, 321 Partial pressure of component gases. 

Sample problems based on Dalton's law 

Problem 68.  The capacity of a vessel is 3 litres. It contains 6 gm oxygen, 8 gm nitrogen and 5 gm 2CO  mixture at 27°C. If R = 8.31 

J/mole  kelvin, then the pressure in the vessel in 2/ mN  will be (approx.) 

(a) 5105   (b) 4105   (c) 610  (d) 510  

Solution : (a) Dalton’s law 









3

3

2

2

1

1
321

321
321 ][

M

m

M

m

M

m

V

RT

V

RT

V

RT

V

RT

V

RT
PPPP 


 

            2533

3
/105~10500~10498

44

5

28

8

32

6

103

30031.8
mN
















. 

Problem 69.  Two gases occupy two containers A and B the gas in A, of volume 310.0 m , exerts a pressure of 1.40 MPa and that in B of 

volume 315.0 m  exerts a pressure 0.7 MPa. The two containers are united by a tube of negligible volume and the gases are 

allowed to intermingle. Then it the temperature remains constant, the final pressure in the container will be (in MPa) 

(a) 0.70 (b) 0.98 (c) 1.40 (d) 2.10 
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Solution : (b) As the quantity of gas remains constant   BA  

   
RT

VVP

RT

VP

RT

VP BABBAA )( 
   

15.01.0

15.07.01.04.1











BA

BBAA

VV

VPVP
P   MPaP 98.0 . 

Problem 70.  The temperature, pressure and volume of two gases X and Y are T, P and V respectively. When the gases are mixed then the 
volume and temperature of mixture become V and T respectively. The pressure and mass of the mixture will be 

(a) 2P and 2M (b) P and M (c) P and 2M (d) 2P and M 

Solution : (a) From Dalton’s law, Pressure of mixture PPPPP 221   

 Similarly mass also will become double i.e. 2M. 

Problem 71.  A closed vessel contains 8g of oxygen and 7g of nitrogen. The total pressure is 10 atm at a given temperature. If now oxygen 
is absorbed by introducing a suitable absorbent the pressure of the remaining gas in atm will be 

(a) 2 (b) 10 (c) 4 (d) 5 

Solution : (d) From Dalton’s law final pressure of the mixture of nitrogen and oxygen  

  21 PPP 
V

RT

V

RT 21 


V

RT

M

m

V

RT

M

m

2

2

1

1 
V

RT

V

RT

V

RT

228

7

32

8
    

V

RT

2
10       …..(i) 

When oxygen is absorbed then for nitrogen let pressure is 
V

RT
P

28

7
                  

V

RT
P

4
      …..(ii) 

From equation (i) and (ii) we get pressure of the nitrogen 5P atm. 

 

(8) Ideal gas equation : From kinetic theory of gases 2

3

1
rmsv

V

mN
P   

    
V

T
P

)gasof  mass(
     [As Tvrms 2 ] 

If mass of gas is constant then PV  T      or    PV = RT. This is ideal gas equation. 

 11.10 Degree of Freedom. 

The term degree of freedom of a system refers to the possible independent motions, systems can have.      or 

The total number of independent modes (ways) in which a system can possess energy is called the degree of freedom (f). 

The independent motions can be translational, rotational or vibrational or any combination of these. 

So the degree of freedom are of three types : (i) Translational degree of freedom 

            (ii) Rotational degree of freedom 

            (iii) Vibrational degree of freedom 

General expression for degree of freedom 

  f = 3A – B ; where A = Number of independent particles, B = Number of independent restriction 

(1) Monoatomic gas : Molecule of monoatomic gas can move in any direction in space so it can 
have three independent motions and hence 3 degrees of freedom (all translational) 

 

 

(2) Diatomic gas : Molecules of diatomic gas are made up of two atoms joined rigidly to one 
another through a bond. This cannot only move bodily, but also rotate about one of the three co-

ordinate axes. However its moment of inertia about the axis joining the two atoms is negligible 
compared to that about the other two axes. Hence it can have only two rotational motion. Thus a 
diatomic molecule has 5 degree of freedom : 3 translational and 2 rotational. 

(3) Triatomic gas (Non-linear) : A non-linear molecule can rotate about any of three co-

z 

vz 

vx 
x 

y 

vy 

v 

z 

x 

y 

x 

z 

y 
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ordinate axes. Hence it has 6 degrees of freedom : 3 translational and 3 rotational. 

 

 

(4) Tabular display of degree of freedom of different gases 
 

Atomicity of gas Example A B f = 3A – B Figure 

 Monoatomic He, Ne, Ar 1 0 f = 3  

 Diatomic H2, O2 2 1 f = 5  
 

 Triatomic non linear H2O 3 3 f = 6 

 

 

 

Triatomic linear CO2, BeCl2 3 2 f = 7 
 

 
 

 

Note :  The above degrees of freedom are shown at room temperature. Further at high temperature, in case of diatomic or 

polyatomic molecules, the atoms with in the molecule may also vibrate with respect to each other. In such cases, the 
molecule will have an additional degrees of freedom, due to vibrational motion.  

 An object which vibrates in one dimension has two additional degree of freedom. One for the potential energy 
and one for the kinetic energy of vibration. 

  A diatomic molecule that is free to vibrate (in addition to translation and rotation) will have 7 (2 + 3 + 2) degrees of 
freedom. 

 An atom in a solid though has no degree of freedom for translational and rotational motion, due to vibration 
along 3 axes has 3  2 = 6 degrees of freedom (and not like an ideal gas molecule). When a diatomic or 
polyatomic gas dissociates into atoms it behaves as monoatomic gas whose degree of freedom are changed 
accordingly. 

 11.11 Law of Equipartition of Energy. 

For any system in thermal equilibrium, the total energy is equally distributed among its various degree of freedom. And the 

energy associated with each molecule of the system per degree of freedom of the system is kT
2

1
. 

   where KJk /1038.1 23 , T = absolute temperature of the system. 

If the system possess degree of freedom f then 

Total energy associated with each molecule kT
f

2
 

Total energy associated with N molecules kT
f

N
2

 

Total energy associated with each mole RT
f

2
 

Total energy associated with  mole RT
f

2


 

Total energy associated with each gram rT
f

2
 

Total energy associated with M0 gram rT
f

M
2

0  

 

Sample problems based on Law of equipartition of energy 

A 

A A 
B 

A 

A A B 

B B 

A 
A 

B B 
A 
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Problem 72.  Energy of all molecules of a monoatomic gas having a volume V and pressure P is PV
2

3
. The total translational kinetic energy 

of all molecules of a diatomic gas as the same volume and pressure is  [UPSEAT 2002] 

(a) PV
2

1
 (b) PV

2

3
 (c) PV

2

5
 (d) 3 PV 

Solution : (b) Energy of 1 mole of gas PV
f

RT
f

22
  where f = Degree of freedom 

 Monoatomic or diatomic both gases posses equal degree of freedom for translational motion and that is equal to 3 i.e. f = 3         

 PVE
2

3
  

 Although total energy will be different,     For monoatomic gas PVE
2

3
total   [As f = 3] 

     For diatomic gas PVE
2

5
total    [As f = 5] 

Problem 73.  The temperature of argon, kept in a vessel is raised by 1°C at a constant volume. The total heat supplied to the gas is a 

combination of translational and rotational energies. Their respective shares are [BHU 2000] 

(a) 60% and 40% (b) 40% and 60% (c) 50% and 50% (d) 100% and 0% 

Solution : (d) As argon is a monoatomic gas therefore its molecule will possess only translatory kinetic energy i.e. the share of translational 

and rotational energies will be 100% and 0% respectively. 

Problem 74.  )(2 OCOCO   is a triatomic gas. Mean kinetic energy of one gram gas will be (If N-Avogadro's number, k-

Boltzmann's constant and molecular weight of 442 CO ) 

(a) NkT88/3  (b) NkT88/5  (c) NkT88/6  (d) NkT88/7  

Solution : (d) Mean kinetic energy for  mole gas RT
f

2
.  

 RTE
2

7
 NkT

M

m

2

7








 NkT










2

7

44

1
NkT

88

7
                 [As f = 7 and M = 44 for 2CO ] 

Problem 75.  At standard temperature and pressure the density of a gas is 1.3 gm/ m3 and the speed of the sound in gas is 330 m/sec. 

Then the degree of freedom of the gas will be  

(a) 3 (b) 4 (c) 5 (d) 6 

Solution : (c) Given velocity of sound 
sec

330
m

vs  ,     Density of gas 
3

3.1
m

kg
 , Atomic pressure 

2

51001.1
m

N
P   

  Substituting these value in 


 P
v sound  we get 41.1     

 Now from  
f

2
1   we get  .5

14.1

2

1

2









f  

 

 11.12 Mean Free Path. 

The molecules of a gas move with high speeds at a given temperature but even then a molecule of the gas takes a very long 
time to go from one point to another point in the container of the gas. This is due to the fact that a gas molecule suffers a number 
of collisions with other gas molecules surrounding it. As a result of these collisions, the 
path followed by a gas molecule in the container of the gas is zig-zag as shown in the 
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figure. During two successive collisions, a molecule of a gas moves in a straight line with constant velocity and the distance 
travelled by a gas molecule between two successive collisions is known as free path. 

The distance travelled by a gas molecule between two successive collisions is not constant and hence the average distance 

travelled by a molecule during all collisions is to be calculated. This average distance travelled by a gas molecule is known as mean 
free path. 

Let n ,...,, 321  be the distance travelled by a gas molecule during n collisions respectively, then the mean free path of a 

gas molecule is given by 
n

n





....321  

(1) 
22

1

nd
  ; where d = Diameter of the molecule, n = Number of molecules per unit volume 

(2) As  PV =  RT =  NkT        n
kT

P

V

N
Number of molecule per unit volume 

So  
Pd

kT
2

2

1


   

(3) From 
22 )(22

1

dmn

m

nd 
   

 22 d

m
  [As mn = Mass per unit volume = Density = ] 

(4) If average speed of molecule is v then  

  
N

t
v  Tv      [As N = Number of collision in time t, T = time interval between two collisions] 

      Important points 

(i) 



22

As
d

m
   




1
 i.e. the mean free path is inversely proportional to the density of a gas.   

(ii) As 
Pd

kT
2

2

1


  . For constant volume and hence constant number density n of gas molecules, 

T

P
 is constant so that 

 will not depend on P and T. But if volume of given mass of a gas is allowed to change with P or T then   T at constant 

pressure and 
P

1
  at constant temperature. 

 

Sample Problems based on Mean free path 

Problem 76.  If the mean free path of atoms is doubled then the pressure of gas will become   [RPMT 2000] 

(a) 4/P  (b) 2/P  (c) 8/P  (d) P  

Solution : (b) As 
Pd

kT
22

1


      



1
P   i.e. by increasing  two times pressure will become half. 

Problem 77.  The mean free path of nitrogen molecules at a pressure of 1.0 atm and temperature 0°C is m7108.0  . If the number of 

density of molecules is 325107.2 perm , then the molecular diameter is  

(a) nm2.3  (b) Å2.3  (c) m2.3  (d) mm3.2  
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Solution : (b) Mean free path   0.8  10–7 m   number of molecules per unit volume 25107.2 n  per m3  

Substituting these value in 
22

1

nd
    we get md 1019 102.31004.1    Å2.3  

 

 11.13 Specific heat or Specific Heat Capacity. 

It characterises the nature of the substance in response to the heat supplied to the substance. Specific heat can be defined by 
two following ways : Gram specific heat and Molar specific heat. 

(1) Gram specific heat : Gram specific heat of a substance may be defined as the amount of heat required to raise the 
temperature of unit mass of the substance by unit degree. 

Gram specific heat 
Tm

Q
c




  

Units : 
Cgm

cal


 , 

kelvingm

cal


 , 

kelvinkg

Joule


 

Dimension : ][ 122  TL  

(2) Molar specific heat : Molar specific heat of a substance may be defined as the amount of heat required to raise the 
temperature of one gram mole of the substance by a unit degree, it is represented by capital (C) 

   
T

Q
C





 

Units : 
Cmole

calorie


, 

kelvinmole

calorie


 or 

kelvinmole

Joule


 

      Important points 

 (1) 
T

Q

m

M
McC






T

Q







1
  









M

m
 As  

i.e. molar specific heat of the substance is M times the gram specific heat, where M is the molecular weight of that substance. 

(2) Specific heat for hydrogen is maximum 
Cgm

cal
c


 5.3 . 

(3) In liquids, water has maximum specific heat 
Cgm

cal
c


 1 . 

(4) Specific heat of a substance also depends on the state of substance i.e. solid, liquid or gas. 

Example : 
Cgm

cal
c


 5.0ice , 

Cgm

cal
c


 1water , 

Cgm

cal
c


 47.0steam  

(5) Specific heat also depends on the conditions of the experiment i.e. the way in which heat is supplied to the body. In 
general, experiments are made either at constant volume or at constant pressure. 

In case of solids and liquids, due to small thermal expansion, the difference in measured values of specific heats is very small 
and is usually neglected. However, in case of gases, specific heat at constant volume is quite different from that at constant 
pressure. 

 11.14 Specific Heat of Gases. 
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In case of gases, heat energy supplied to a gas is spent not only in raising the temperature of the gas but also in expansion of 
gas against atmospheric pressure. 

Hence specific heat of a gas, which is the amount of heat energy required to raise the temperature of one gram of gas 

through a unit degree shall not have a single or unique value. 

(i) If the gas is compressed suddenly and no heat is supplied from outside i.e. Q = 0, but the temperature of the gas raises 

on the account of compression.  

  0
)(







Tm

Q
C    i.e.   C = 0 

(ii) If the gas is heated and allowed to expand at such a rate that rise in temperature due to heat supplied is exactly equal to 

fall in temperature due to expansion of the gas. i.e. T = 0 

  








0)(

Q

Tm

Q
C    i.e.  C =  

(iii) If rate of expansion of the gas were slow, the fall in temperature of the gas due to expansion would be smaller than the 

rise in temperature of the gas due to heat supplied. Therefore, there will be some net rise in temperature of the gas i.e. T will be 

positive. 

  
)( Tm

Q
C




 positive   i.e.  C = positive 

(iv) If the gas were to expand very fast, fall of temperature of gas due to expansion would be greater than rise in 

temperature due to heat supplied. Therefore, there will be some net fall in temperature of the gas i.e. T will be negative. 

  



)( Tm

Q
C




negative   i.e.   C = negative 

Hence the specific heat of gas can have any positive value ranging from zero to infinity. Further it can even be negative. The 
exact value depends upon the mode of heating the gas. Out of many values of specific heat of a gas, two are of special significance. 

(1) Specific heat of a gas at constant volume (cv) : The specific heat of a gas at constant volume is defined as the quantity of 

heat required to raise the temperature of unit mass of gas through 1 K when its volume is kept constant, i.e., 
Tm

Q
c v
v






)(
 

If instead of unit mass, 1 mole of gas is considered, the specific heat is called molar specific heat at constant volume and is 
represented by capital Cv. 

  
T

Q

Tm

QM
McC vv

vv










)(1)(


  









M

m
 As  

(2) Specific heat of a gas at constant pressure (cp) : The specific heat of a gas at constant pressure is defined as the quantity 

of heat required to raise the temperature of unit mass of gas through 1 K when its pressure is kept constant, i.e., 
Tm

Q
c

p
P






)(
 

If instead of unit mass, 1 mole of gas is considered, the specific heat is called molar specific heat at constant pressure and is 
represented by Cp. 

  
T

Q

Tm

QM
MCC

pp
pp











)(1)(


  









M

m
 As  

 11.15 Mayer's Formula. 

Out of two principle specific heats of a gas, Cp is more than Cv because in case of Cv, volume of gas is kept constant and heat 

is required only for raising the temperature of one gram mole of the gas through 1°C or 1 K. 
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No heat, what so ever, is spent in expansion of the gas. 

It means that heat supplied to the gas increases its internal energy only i.e. 

  TCUQ vv  )(        …..(i) 

while in case of Cp the heat is used in two ways 

(i) In increasing the temperature of the gas by T 

(ii) In doing work, due to expansion at constant pressure (W) 

So  TCWUQ pp  )(       …..(ii) 

From equation (i) and (ii)    WTCTC vp    

        VPCCT vp  )(  [For constant P, W = PV] 

       
T

VP
CC vp







  [From PV = RT, At constant pressure PV = RT] 

       RCC vp   

This relation is called Mayer’s formula and shows that vp CC   i.e. molar specific heat at constant pressure is greater than 

that at constant volume. 

 11.16 Specific Heat in Terms of Degree of Freedom. 

We know that kinetic energy of one mole of the gas, having f degrees of freedom can be given by 

  RT
f

E
2

         …..(i) 

where T is the temperature of the gas but from the definition of Cv , if dE is a small amount of heat energy required to raise 

the temperature of 1 gm mole of the gas at constant volume, through a temperature dT then 

  dTCdE v dTCv  or 
dT

dE
Cv    [As  = 1]  …..(ii) 

Putting the value of E from equation (i) we get  







 RT

f

dT

d
Cv

2
R

f

2
  

  R
f

Cv
2

   

From the Mayer’s formula RCC vp     RR
f

RCC vp 
2

R
f









 1

2
 

  R
f

Cp 







 1

2
    

Ratio of Cp and Cv : 
f

R
f

R
f

C

C

v

p 2
1

2

1
2













  
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  
f

2
1   

      Important points 

(i) Value of  is always more than 1. So we can say that always Cp > Cv . 

(ii) Value of  is different for monoatomic, diatomic and triatomic gases. 

(iii) As 
f

2
1           1

2
 

f
  

1

1

2 



f
 

 
12 




R
R

f
Cv  

and RR
f

Cp 



















 1

1

1
1

2 
 R












1


 

 

Specific heat and kinetic energy for different gases  

  Monoatomic Diatomic Triatomic 
non-linear 

Triatomic 
linear 

Atomicity  A 1 2 3 3 

Restriction  B 0 1 3 2 

Degree of freedom  f = 3A – B 3 5 6 7 

Molar specific heat at 
constant volume  12 




R
R

f
Cv

 R
2

3
 R

2

5
 3R R

2

7
 

Molar specific heat at 
constant pressure  RR

f
C p 





















1
1

2 


 R

2

5
 R

2

7
 4R R

2

9
 

Ratio of Cp and Cv 

fC

C

v

p 2
1   66.1~

3

5
  4.1~

5

7
  33.1~

3

4
  28.1~

7

9
  

Kinetic energy of  

1 mole 
RT

f
E

2
mole   RT

2

3
 RT

2

5
 3RT RT

2

7
 

Kinetic energy of  

1 molecule 
kT

f
E

2
molecule   kT

2

3
 kT

2

5
 3kT kT

2

7
 

Kinetic energy of  

1 gm 
rT

f
E

2
gram   rT

2

3
 rT

2

5
 3rT rT

2

7
 

 

Sample Problems based on Specific heat 

Problem 78.  Find the ratio of specific heat at constant pressure to the specific heat constant volume for 3NH  [RPMT 2003] 

(a) 1.33 (b) 1.44 (c) 1.28 (d) 1.67 

Solution : (c) For polyatomic gas ratio of specific heat  < 1.33 

 Because we know that as the atomicity of gas increases its value of  decreases. 

Problem 79.  For a gas 67.0
vC

R
. This gas is made up of molecules which are [CBSE PMT 1992; JIPMER 2001, 2002] 
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(a) Diatomic   (b) Mixture of diatomic and polyatomic molecules 

(c) Monoatomic   (d) Polyatomic 

Solution : (c) By comparing with relation 
1




R
Cv  we get 67.01   or  = 1.67 i.e. the gas is monoatomic. 

Problem 80.  40 calories of heat is needed to raise the temperature of 1 mole of an ideal monoatomic gas from 20°C to 30°C at a constant 
pressure. The amount of heat required to raise its temperature over the same interval at a constant volume 

)2( 11  KmolecalorieR  is      [UPSEAT 2000] 

(a) 20 calorie (b) 40 calorie (c) 60 calorie (d) 80 calorie 

Solution : (a) At constant pressure TCQ pp  )(  40)2030(1  pC   
kelvinmole

calorie
C p 4  

   RCC pv    
kelvinmole

calorie


 224  

  Now )2030(21)(  TCQ vv  calorie20  

Problem 81.  At constant volume the specific heat of a gas is ,
2

3R
then the value of  will be   [DPMT 1999] 

(a) 
2

3
 (b) 

2

5
 (c) 

3

5
 (d) None of the above 

Solution : (c) Specific heat at constant volume 
2

3

1

RR
Cv 





   (given)  

    
3

2
1       

3

5
 . 

Problem 82.  For a gas the difference between the two specific heats is 4150 J/kg K. What is the specific heats at constant volume of gas if 
the ratio of specific heat is 1.4     [AFMC 1998] 

(a) 8475 J/kg - K (b) 5186 J/kg - K (c) 1660 J/kg - K (d) 10375 J/kg - K 

Solution : (d) Given  4150 vp cc  …..(i)  and  4.1
v

p

c

c
   vp cc 4.1  …..(ii) 

  By substituting the value of pc  in equation (i) we get 41504.1  vv cc   41504.0 vc  

    KkgJcv -/10375
4.0

4150
 . 

Problem 83.  Two cylinders A and B fitted with pistons contain equal amounts of an ideal diatomic gas at 300K. The piston of A is free to 
move while that of B is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of 
the gas in A is 30 K, then the rise in temperature of the gas in B is [IIT-JEE 1998] 

(a) 30 K (b) 18 K (c) 50 K (d) 42 K 

Solution : (d) In both cylinders A and B the gases are diatomic ( = 1.4). Piston A is free to move i.e. it is isobaric process. Piston B is fixed 

i.e. it is isochoric process. If same amount of heat Q is given to both then 

  isochoricisobaric )()( QQ   

  BvAp TCTC )()(          .42304.1)()()( KTT
C

C
T AA

v

p
B    

Problem 84.  The specific heat of a gas       [MP PET 1996] 

(a) Has only two values of pC  and vC  (b) Has a unique value at a given temperature 

(c) Can have any value between 0 and  (d) Depends upon the mass of the gas 

Solution : (c) Range of specific heat varies from positive to negative and from zero to infinite. It depends upon the nature of process. 

Problem 85.  The specific heat at constant volume for the monoatomic argon is 0.075 kcal/kg-K whereas its gram molecular specific 

heat 98.2vC  cal/mole/K. The mass of the argon atom is (Avogadro’s number 231002.6  molecules/mole)  
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(a) gm231060.6   (b) gm231030.3   (c) gm231020.2   (d) gm231020.13   

Solution : (a) Molar specific heat = Molecular weight  Gram specific heat 

               vv cMC   

       
kelvinkg

kcal
M

kelvinmole

calorie

-
075.098.2 

 kelvingm

calorie
M






3

3

10

10075.0
 

   molecular weight of argon  gmM 7.39
075.0

98.2
  

  i.e. mass of 2310023.6  atom = 39.7 gm   mass of single atom gm23

23
1060.6

10023.6

7.39 


 . 

Problem 86.  When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the 
internal energy of the gas is     [IIT-JEE 1990] 

(a) 2/5 (b) 3/5 (c) 3/7 (d) 5/7 

Solution : (d) When a gas is heated at constant pressure then its one part goes to increase the internal energy and another part for work 

done against external pressure i.e. WUQ p  )(  

         VPTCTC vp    

 So fraction of energy that goes to increase the internal energy 
7

51

)(






p

v

p C

C

Q

U
 [As 

5

7
  for diatomic gas] 

Problem 87.  The temperature of 5 mole of a gas which was held at constant volume was changed from 100oC to 120oC. The change in 
internal energy was found to be 80 J. The total heat capacity of the gas at constant volume will be equal to  

(a) 18 KJ  (b) 18.0 KJ  (c) 14 KJ  (d) 14.0 KJ  

Solution : (c) At constant volume total energy will be utilised in increasing the temperature of gas  

  i.e. TCQ vv  )(  80)100120(  vC  

     4
20

80
vC  Joule/kelvin. This is the heat capacity of 5 mole gas. 

Problem 88.  A gas, is heated at constant pressure. The fraction of heat supplied used for external work is 

(a) 


1
 (b) 











1
1  (c) 1  (d) 












2

1
1


 

Solution : (b) We know fraction of given energy that goes to increase the internal energy 


1
  

 So we can say the fraction of given energy that supplied for external work 


1
1  . 

Problem 89.  A monoatomic gas expands at constant pressure on heating. The percentage of heat supplied that increases the internal 
energy of the gas and that is involved in the expansion is 

(a) 75%, 25% (b) 25%, 75% (c) 60%, 40% (d) 40%, 60% 

Solution : (c) Fraction of energy supplied for increment in internal energy 


1


5

3
         








 gas monoatomicfor 

3

5
 As  

   Percentage energy %60
5

30
   
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Fraction of energy supplied for external work done 
5

2

3

5

1
3

5
11

1 











 

   Percentage energy %40%100
5

2
 . 

Problem 90.  The average degrees of freedom per molecule for a gas is 6. The gas performs 25 J of work when it expands at constant 
pressure. The heat absorbed by gas is 

(a) 75 J (b) 100 J (c) 150 J (d) 125 J 

Solution : (b) As f = 6  (given)  
3

4

6

2
1

2
1 

f
  

Fraction of energy given for external work 















1
1

Q

W
  

      









 3/4

1
1

25

Q
  

4

1

4

3
1    JouleQ 100425   

Problem 91.  Certain amount of an ideal gas are contained in a closed vessel. The vessel is moving with a constant velocity v. The 

molecular mass of gas is M. The rise in temperature of the gas when the vessel is suddenly stopped is )/( VP CC  

(a) 
)1(2

2

R

Mv
 (b) 

R

Mv

2

)1(2 
 (c) 

)1(2

2

R

Mv
 (d) 

)1(2

2

R

Mv
 

Solution : (b) If m is the total mass of the gas then its kinetic energy 2

2

1
mv  

 When the vessel is suddenly stopped then total kinetic energy will increase the temperature of the gas (because process will 

be adiabatic) i.e. TCmv v 2

2

1
TC

M

m
v        [As 

1



R
Cv ] 

       2

2

1

1
mvT

R

M

m



   

R

Mv
T

2

)1(2 



. 

Problem 92.  The density of a polyatomic gas is standard conditions is 0.795 3kgm . The specific heat of the gas at constant volume is 

(a) 11-930  KkgJ  (b) 11-1400  KkgJ  (c) 11-1120  KkgJ  (d) 11-925  KkgJ  

Solution : (b) Ideal gas equation for m gram gas mrTPV   [where r = Specific gas constant] 

or rT
V

m
P  rT      7.466

273795.0

10013.1 5







T

P
r


 

  Specific heat at constant volume 

1
3

4

7.466

1








r
cv  

kelvinkg

J

.
1400       








 gasomic for polyat 

3

4
  

Problem 93.  The value of RCC vp 00.1  for a gas in state A and RCC vp 06.1  in another state. If AP  and BP  denote the 

pressure and AT  and BT  denote the temperatures in the two states, then 

(a) BA PP  , BA TT   (b) BA PP  , BA TT   (c) BA PP  , BA TT   (d) BA PP  , BA TT   

Solution : (c) For state A, RCC vp   i.e. the gas behaves as ideal gas.  

  For state B, )(06.1 RRCC vp   i.e. the gas does not behave like ideal gas. 

  and we know that at high temperature and at low pressure nature of gas may be ideal. 
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 So we can say that BA PP   and BA TT   

 11.17 Gaseous Mixture. 

If two non-reactive gases are enclosed in a vessel of volume V. In the mixture 1 moles of one gas are mixed with 2 moles of 

another gas. If NA is Avogadro’s number then  

Number of molecules of first gas ANN 11    

and number of molecules of second gas ANN 22   

(i) Total mole fraction )( 21   . 

(ii) If 1M  is the molecular weight of first gas and 2M  that of second gas. 

Then molecular weight of mixture will be 
21

2211










MM
M  

(iii) Specific heat of the mixture at constant volume will be  

       
21

21 21










VV

V

CC
C

mix

21

2
2

1
1

11


































RR

 














11 2

2

1

1

21 









R
  

  















1

/

1

/

2

22

1

11

2

2

1

1 

MmMm

M

m

M

m

R
C

mixV  

(iv) Specific heat of the mixture at constant pressure will be 
21

21 21










PP

P

CC
C

mix
  

 
21

2

2
2

1

1
1

11






































RR

C
mixP  
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


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
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






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


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





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1
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



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

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



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
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

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


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




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m
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m
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(v) 
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mixture )(

)(
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








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)1()1(

)1()1(
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1221
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2
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1

1

2
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
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
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Sample problems based on Mixture 
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Problem 94.  If two moles of diatomic gas and one mole of monoatomic gas are mixed with then the ratio of specific heats is  

 [MP PMT 2003] 

(a) 
3

7
 (b) 

4

5
 (c) 

13

19
 (d) 

19

15
 

Solution : (c) 11  , 
3

5
1   (for monoatomic gas)  and 22  , 

5

7
2   (for diatomic gas) 

 From formula 
13

19

52/3

72/5

1
5

7

2

1
3

5

1

1
5

7
5

7
2

1
3

5
3

5
1

11

11

2

2

1

1

2

22

1

11

mixture 

















































  

Problem 95.  22 gm of 2CO  at 27°C is mixed with 16 gm of 2O  at 37°C. The temperature of the mixture is [CBSE PMT 1995] 

(a) 32°C (b) 27°C (c) 37°C (d) 30.5°C 

Solution : (a) Let t is the temperature of mixture 

  Heat gained by 2CO = Heat lost by 2O  

     2211 21
TCTC vv    

   )37(
2

5

32

16
)27)(3(

44

22
tRtR 








  

   )37(
2

5
)27(3 tt   

  By solving we get Ct  32 . 

Problem 96.  A gas mixture consists of 2 mole of oxygen and 4 mole of argon at temperature T. Neglecting all vibrational modes, the total 

internal energy of the system is 

(a) 4 RT (b) 15 RT (c) 9 RT (d) 11 RT 

Solution : (d) Total internal energy of system RT
f

RT
f

UU
22
2

2
1

1argonoxygen    

   RTRTRTRTRT 1165
2

3
4

2

5
2   [As f1 = 5 (for oxygen) and f2 = 3 (for argon)] 
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